An EOQ model with time-dependent increasing demand under jit philosophy for a distributor/agent
Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 54-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article generalizes an EOQ model for a distributor/agent with Just-in-Time (JIT) philosophy. It is assumed that the demand of seasonal goods is an increasing function of time. The optimality condition of the associated objective function is derived analytically. Also, the model is illustrated with the numerical examples.
@article{VMJ_2006_8_2_a7,
     author = {S. S. Sana},
     title = {An {EOQ} model with time-dependent increasing demand under jit philosophy for a distributor/agent},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {54--60},
     year = {2006},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a7/}
}
TY  - JOUR
AU  - S. S. Sana
TI  - An EOQ model with time-dependent increasing demand under jit philosophy for a distributor/agent
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2006
SP  - 54
EP  - 60
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a7/
LA  - en
ID  - VMJ_2006_8_2_a7
ER  - 
%0 Journal Article
%A S. S. Sana
%T An EOQ model with time-dependent increasing demand under jit philosophy for a distributor/agent
%J Vladikavkazskij matematičeskij žurnal
%D 2006
%P 54-60
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a7/
%G en
%F VMJ_2006_8_2_a7
S. S. Sana. An EOQ model with time-dependent increasing demand under jit philosophy for a distributor/agent. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 54-60. http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a7/

[1] Wilson R. H., “A scientific routine for stock control”, Harvard Business Review, 13 (1934), 116–128

[2] Silver E. A., Meal H. C., “A simple modification of the EOQ for the case of a varying demand rate”, Production and Inventory Management, 10:4 (1969), 52–65

[3] Donaldson W. A., “Inventory replenishment policy for a linear trend in demand-an analytical solution”, Operational Research Quarterly, 28 (1977), 663–670 | DOI | Zbl

[4] Silver E. A., “A simple inventory replenishment decision rule for a linear trend in demand”, Journal of Operational Research Society, 30 (1979), 71–75 | Zbl

[5] Ritchie E., “Practical inventory replenishment policies for a linear trend in demand followed by a period of steady demand”, Journal of Operational Research Society, 31 (1980), 605–613 | Zbl

[6] Ritchie E., “The EOQ for linear increasing demand: a simple optimal solution”, Journal of Operational Research Society, 35 (1984), 949–952 | Zbl

[7] Ritchie E., “Stock replenishment quantities for unbounded linear increasing demand: an interesting consequence of the optimal policy”, Journal of Operational Research Society, 36 (1985), 737–739

[8] Kicks P., Donaldson W. A., “Joint price and lot-size determination when supplier offers incremental quantity discounts”, Journal of Operational Research Society, 39 (1988), 725–732

[9] Buchanan J. T., “Alternative solution methods for the inventory replenishment problem under increasing demand”, Journal of Operational Research Society, 31 (1980), 615–620 | Zbl

[10] Mitra A., Fox J. F., Jessejr R. R., “A note on determining order quantities with a linear trend in demand”, Journal of Operational Research Society, 35 (1984), 141–144 | DOI | Zbl

[11] Ritchie E., Tsado A., “Penalties of using EOQ: a comparison of lot sizing rules for linearly increasing demand”, Production and Inventory Management, 27:3 (1986), 65–79 | MR

[12] Goyal S. K., “On improving replenishment policies for linear trend in demand”, Engineering Costs and Production Economics, 10 (1986), 73–76 | DOI

[13] Goyal S. K., Kusy M., Soni R., “A note on the economic order intervals for an item with linear trend in demand”, Engineering Costs and Production Economics, 10 (1986), 253–255

[14] Deb M., Chaudhuri K. S., “A note on the heuristic for replenishment of trended inventories considering shortages”, Journal of Operational Research Society, 38 (1987), 459–463 | Zbl

[15] Murdeshwar T. M., “Inventory replenishment policies for linearly increasing demand considering shortages”, Journal of Operational Research Society, 39 (1986), 687–692

[16] Dave U., “On a heuristic inventory replenishment rule for items with a linearly increasing demand incorporating shortages”, Journal of Operational Research Society, 40, 827–830 | Zbl

[17] Goyal S. K., “A heuristic for replenishment of trended inventories considering shortages”, Journal of Operational Research Society, 39 (1988), 885–887

[18] Hariga M., “Optimal EOQ models for deteriorating items with time varying demand”, Journal of Operational Research Society, 47 (1996), 1228–1246 | Zbl

[19] Goyal S. K., Marin D., Nebebe F., “The finite horizon trended inventory replenishment problem with shortages”, Journal of Operational Research Society, 43 (1992), 1173–1178 | MR | Zbl

[20] Dave U., Patel L. K., “$(T,Si)$ policy inventory model for deteriorating items with time proportional demand”, Journal of Operational Research Society, 32 (1981), 137–138

[21] Bahari-Kashani H., “Replenishment schedule for deteriorating items with time-proportional demand”, Journal of Operational Research Society, 40 (1989), 75–81 | Zbl

[22] Hong J. D., Sandrapaty R. R., Hayya J. C., “On production policies for a linearly increasing demand and finite, uniform production rate”, Computers in Industrial Engineering, 18:2 (1990), 119–127 | DOI

[23] Chung K. J., Ting P. S., “A heuristic for replenishment of deteriorating items with a linear trend in demand”, Journal of Operational Research Society, 44:12 (1993), 1235–1241 | Zbl

[24] Goswami A., Chaudhuri K. S., “An EOQ model for deteriorating items with a linear trend in demand”, Journal of Operational Research Society, 42:12 (1991), 1105–1110 | Zbl

[25] Hariga M., “An EOQ model for deteriorating items with shortages and time-varying demand”, Journal of Operational Research Society, 46 (1995), 398–404 | Zbl

[26] Giri B. C., Goswami A., Chaudhuri K. S., “An EOQ model for deteriorating items with time varying demand and costs”, Journal of Operational Research Society, 47 (1996), 1398–1405 | Zbl

[27] Teng J. T., “A deterministic inventory replenishment model with a linear trend in demand”, Operations Research Letters, 19 (1996), 33–41 | DOI | MR | Zbl

[28] Jalan A. K., Giri R. R., Chaudhuri K. S., “EOQ model for items with weibull distribution deterioration, shortages and trended demand”, International Journal of Systems Science, 27:9 (1996), 851–855 | DOI | Zbl

[29] Chakrabarty T., Giri B. C., Chaudhuri K. S., “An EOQ model for items with weibull distribution deterioration, shortages and trended demand: an extension of Philip's model”, Computer Operations Research, 25:7/8 (1998), 649–657 | DOI | Zbl

[30] Linn C., Tan B., Lee W. C., “An EOQ model for deteriorating items with time-varying demand and shortages”, International Journal of Systems Science, 31:3 (2000), 391–400 | DOI

[31] Jalan A. K., Chaudhuri K. S., “Structural properties of an inventory system with deterioration and trended demand”, International Journal of Systems Science, 30:6 (1999), 627–633 | DOI | Zbl

[32] Hariga M. A., Benkherouf L., “Optimal and heuristic inventory replenishment of deteriorating items with exponential time-varying demand”, Journal of Operational Research Society, 79 (1994), 123–137 | DOI | Zbl

[33] Wee H. M., “A deterministic lot-size inventory model for deteriorating items with shortages and a declining market”, Computers Operations Research, 22:3 (1995), 345–356 | DOI | Zbl

[34] Khanra S., Chaudhuri K. S., “A note on an order-level inventory model for a deteriorating item with time-dependent quadratic demand”, Computers Operations Research, 30 (2003), 1901–1916 | DOI | Zbl

[35] Clark A. J., Scarf H., “Optimal policies for a multi-echelon inventory problem”, Management Science, 6 (1960), 475–490 | DOI

[36] Sherbrokke C. C., “Metric: A multi-echelon technique for recoverable item control”, Operations Research, 16 (1968), 122–141 | DOI

[37] Axsater S., Zhang W. F., “A joint replenishment policy for multi-echelon inventory control”, International Journal of Production Economics, 59 (1999), 243–250 | DOI

[38] Chou T. H., Integrated two-stage inventory model for deteriorating items, Master's Thesis, Chung Yuan Chirstian University, Taiwan, ROC

[39] Van der Heijden, Diks E. B., de Kok A. G., “Stock allocation in general multi-echelon distribution systems with $(R, S)$ order-up-to-policies”, International Journal of Production Economics, 49 (1997), 157–174 | DOI

[40] Diks E. B., de Kok A. G., “Optimal control of a divergent multi-echelon inventory system”, European Journal of Operational Research, 11 (1998), 75–97 | DOI

[41] Iida T., “The infinite horizon non-stationary stochastic multi-echelon inventory problem and near-myopic policies”, European Journal of Operational Research, 134 (2001), 525–539 | DOI | MR | Zbl

[42] Schonberger R. J., Japanese Manufacturing Techniques, The free Press, New York, 1982

[43] Wantuck K. A., Just in Time for America, The Forum, Milwaukee, WI, 1989

[44] Voss C. A., International Trends in Manufacturing Technology: JIT Manufacture, Springer, 1990 | Zbl

[45] Stasey R., McNair C. J., Crossroads: A JIT success story, Dow Jones-Irwin, Homewood, IL, 1990

[46] Jones D. J., “JIT the EOQ model: odd couples no more!”, Management Accounting, 72:8 (1991), 54–57

[47] Hay E. J., The JIT breakthrough: implementing the new manufacturing basics, Wiley, New York, 1988 | Zbl