Inequalities for the Schwarzian derivative for subclasses of convex functions in the unit disc
Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 50-53
Cet article a éte moissonné depuis la source Math-Net.Ru
Nehari norm of the Schwarzian derivative of an analytic function is closely related to its univalence. The famous Nehari-Kraus theorem ([3], [4]) and Ahlfors-Weill theorem [1] are of fundamental importance in this direction. For a non-constant meromorphic function $f$ on $D$ the unite disc, the Schwarzian derivative $S_f$ of $f$ by is holomorphic at $z_0\in D$ if and only if $f$ is locally univalent at $z_0$. The aim of this paper is to give sharp estimates of the Nehari norm for the subclasses of convex functions in the unit disc.
@article{VMJ_2006_8_2_a6,
author = {Y. Polatoglu and M. Caglar and A. Sen},
title = {Inequalities for the {Schwarzian} derivative for subclasses of convex functions in the unit disc},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {50--53},
year = {2006},
volume = {8},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a6/}
}
TY - JOUR AU - Y. Polatoglu AU - M. Caglar AU - A. Sen TI - Inequalities for the Schwarzian derivative for subclasses of convex functions in the unit disc JO - Vladikavkazskij matematičeskij žurnal PY - 2006 SP - 50 EP - 53 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a6/ LA - en ID - VMJ_2006_8_2_a6 ER -
%0 Journal Article %A Y. Polatoglu %A M. Caglar %A A. Sen %T Inequalities for the Schwarzian derivative for subclasses of convex functions in the unit disc %J Vladikavkazskij matematičeskij žurnal %D 2006 %P 50-53 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a6/ %G en %F VMJ_2006_8_2_a6
Y. Polatoglu; M. Caglar; A. Sen. Inequalities for the Schwarzian derivative for subclasses of convex functions in the unit disc. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 50-53. http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a6/
[1] Duren P. L., Univalent Functions, Springer-Verlag New York Inc., NY, 1983 | MR | Zbl
[2] Janowski W., “Some Extremal Problems for Certain Families of Analytic Functions, I”, Annales Polinici Math., 28 (1973), 297–326 | MR | Zbl
[3] Kraus W., “Über den Zusammanhang Charakteristiken Eines Einfach Zusammeshängenden Bereiches mit der Kreisabbildung”, Mitt. Math. Sem. Giessen, 21 (1932), 1–28 | Zbl
[4] Nehari Z., “The Schwarzian Derivative and Schlicht Functions”, Bull. Amer. Math. Soc., 55 (1949), 445–551 | DOI | MR
[5] Robertson M. S., “Univalent Functions for which $zf'(z)$ is spirallike”, Michigan Math. J., 16 (1969), 97–101 | DOI | MR | Zbl