Inequalities for the Schwarzian derivative for subclasses of convex functions in the unit disc
Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 50-53

Voir la notice de l'article provenant de la source Math-Net.Ru

Nehari norm of the Schwarzian derivative of an analytic function is closely related to its univalence. The famous Nehari-Kraus theorem ([3], [4]) and Ahlfors-Weill theorem [1] are of fundamental importance in this direction. For a non-constant meromorphic function $f$ on $D$ the unite disc, the Schwarzian derivative $S_f$ of $f$ by is holomorphic at $z_0\in D$ if and only if $f$ is locally univalent at $z_0$. The aim of this paper is to give sharp estimates of the Nehari norm for the subclasses of convex functions in the unit disc.
@article{VMJ_2006_8_2_a6,
     author = {Y. Polatoglu and M. Caglar and A. Sen},
     title = {Inequalities for the {Schwarzian} derivative for subclasses of convex functions in the unit disc},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {50--53},
     publisher = {mathdoc},
     volume = {8},
     number = {2},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a6/}
}
TY  - JOUR
AU  - Y. Polatoglu
AU  - M. Caglar
AU  - A. Sen
TI  - Inequalities for the Schwarzian derivative for subclasses of convex functions in the unit disc
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2006
SP  - 50
EP  - 53
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a6/
LA  - en
ID  - VMJ_2006_8_2_a6
ER  - 
%0 Journal Article
%A Y. Polatoglu
%A M. Caglar
%A A. Sen
%T Inequalities for the Schwarzian derivative for subclasses of convex functions in the unit disc
%J Vladikavkazskij matematičeskij žurnal
%D 2006
%P 50-53
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a6/
%G en
%F VMJ_2006_8_2_a6
Y. Polatoglu; M. Caglar; A. Sen. Inequalities for the Schwarzian derivative for subclasses of convex functions in the unit disc. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 50-53. http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a6/