The Gel'fand-Mazur theorem for $C^*$-algebras over a ring of measurable functions
Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 45-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2006_8_2_a5,
     author = {K. K. Kudaǐbergenov},
     title = {The {Gel'fand-Mazur} theorem for $C^*$-algebras over a ring of measurable functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {45--49},
     year = {2006},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a5/}
}
TY  - JOUR
AU  - K. K. Kudaǐbergenov
TI  - The Gel'fand-Mazur theorem for $C^*$-algebras over a ring of measurable functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2006
SP  - 45
EP  - 49
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a5/
LA  - ru
ID  - VMJ_2006_8_2_a5
ER  - 
%0 Journal Article
%A K. K. Kudaǐbergenov
%T The Gel'fand-Mazur theorem for $C^*$-algebras over a ring of measurable functions
%J Vladikavkazskij matematičeskij žurnal
%D 2006
%P 45-49
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a5/
%G ru
%F VMJ_2006_8_2_a5
K. K. Kudaǐbergenov. The Gel'fand-Mazur theorem for $C^*$-algebras over a ring of measurable functions. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 45-49. http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a5/

[1] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, 29, Izd-vo IM SO RAN, Novosibirsk, 1995, 63–211 | MR

[2] Kusraev A. G., Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985, 256 pp. | MR | Zbl

[3] Kusraev A. G., Bulevoznachnyi analiz involyutivnykh banakhovykh algebr, Izd-vo SOGU, Vladikavkaz, 1996, 96 pp. | MR

[4] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003, 619 pp. | MR

[5] Ganiev I. G., Chilin V. I., “Izmerimye rassloeniya $C^*$-algebr”, Vladikavk. mat. zhurn., 5:1 (2003), 35–38 | MR | Zbl

[6] Rudin U., Funktsionalnyi analiz, Mir, M., 1977, 442 pp. | MR

[7] Ganiev I. G., Kudaibergenov K. K., “Konechnomernye moduli nad koltsom izmerimykh funktsii”, Uzb. mat. zhurn., 2004, no. 4, 3–9 | MR