On projective limits of real $C^{\ast}$-algebras and Jordan operator algebras
Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 33-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper a real and Jordan analogues of complex locally $C^{\ast}$-algebras are introduced. Their definitions and basic properties are discussed.
@article{VMJ_2006_8_2_a3,
     author = {A. A. Katz and O. Friedman},
     title = {On projective limits of real $C^{\ast}$-algebras and {Jordan} operator algebras},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {33--38},
     year = {2006},
     volume = {8},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a3/}
}
TY  - JOUR
AU  - A. A. Katz
AU  - O. Friedman
TI  - On projective limits of real $C^{\ast}$-algebras and Jordan operator algebras
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2006
SP  - 33
EP  - 38
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a3/
LA  - en
ID  - VMJ_2006_8_2_a3
ER  - 
%0 Journal Article
%A A. A. Katz
%A O. Friedman
%T On projective limits of real $C^{\ast}$-algebras and Jordan operator algebras
%J Vladikavkazskij matematičeskij žurnal
%D 2006
%P 33-38
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a3/
%G en
%F VMJ_2006_8_2_a3
A. A. Katz; O. Friedman. On projective limits of real $C^{\ast}$-algebras and Jordan operator algebras. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 2, pp. 33-38. http://geodesic.mathdoc.fr/item/VMJ_2006_8_2_a3/

[1] Allan G. R., “On a class of locally convex algebras”, Proc. London Math. Soc. Ser. III, 17 (1967), 91–114 | DOI | MR | Zbl

[2] Arens R., “A generalization of normed rings”, Pac. J. Math., 2 (1952), 455–471 | MR | Zbl

[3] Ayupov Sh. A., Rakhimov A. A., Usmanov Sh. M., Jordan, Real and Lie structures in operator algebras, Kluwer Academic Publishers, Dordrecht, 1997, 225 pp. | MR | Zbl

[4] Brooks R. M., “On representing $F^{\ast}$-algebras”, Pacific J. Math., 39 (1971), 51–69 | MR | Zbl

[5] Fragoulopoulou M., An introduction to the representation theory of topological $\ast$-algebras, Schriftenr. Math. Inst. Univ. Münster. Ser. 2, 48, 1988, 81 pp. | MR | Zbl

[6] Fritzsche M., “On the existence of dense ideals in $LMC^{\ast}$-algebras”, Z. Anal. Anwend., 1:3 (1982), 81–84 | MR | Zbl

[7] Fritzsche M., “Über die Struktur maximaler Ideale in $LMC^{\ast}$-Algebren. (On the structure of maximal ideals in $LMC^{\ast}$-algebras)”, Z. Anal. Anwend., 4 (1985), 201–205 | MR | Zbl

[8] Hanche-Olsen H., Størmer E., Jordan operator algebras, Pitman Advanced Publishing Program, Boston–London–Melbourne, 1984, viii+183 pp. | MR | Zbl

[9] Iguri S., Castagnino M., “The formulation of quantum mechanics in terms of nuclear algebras”, Int. J. Theor. Phys., 38:1 (1999), 143–164 | DOI | MR | Zbl

[10] Inoue A., “Locally $C^{\ast}$-algebra”, Mem. Fac. Sci. Kyushu Univ. Ser. A, 25 (1971), 197–235 | MR | Zbl

[11] Michael E. A., Locally multiplicatively-convex topological algebras, Mem. Amer. Math. Soc., 11, 1952, 79 pp. | MR | Zbl

[12] Li B., Real operator algebras, World Scientific, River Edge, NJ, 2003, 241 pp. | MR

[13] Pedersen G. K., $C^*$-algebras and their automorphism groups, Academic Press, London–New York–San Fransisco, 1979, 416 pp. | MR | Zbl

[14] Pietsch A., Nuclear locally convex spaces, Springer, Berlin–Heidelberg–New York, 1972, 192 pp. | MR | Zbl

[15] Phillips N. C., “Inverse limits of $C^{\ast}$-algebras”, J. Operator Theory, 19:1 (1988), 159–195 | MR | Zbl

[16] Schaefer H. H., Wolff M. P., Topological vector spaces, Springer, New York, NY, 1999, 346 pp. | MR

[17] Schmüdgen K., “Über $LMC$-Algebren”, Math. Nachr., 68 (1975), 167–182 | DOI | MR | Zbl

[18] Sya Do-Shin, “On semi-normed rings with involution”, Izv. Akad. Nauk SSSR. Ser. Mat., 23 (1959), 509–528 | MR

[19] Trèves F., Topological vector spaces: Distributions and Kernels, Acad. press, New York–London, 1967, 565 pp. | MR

[20] Wenjen C., “On semi-normed $\ast $-algebras”, Pacific J. Math., 8 (1958), 177–186 | MR | Zbl

[21] Whitehead G. W., Elements of homotopy theory, Springer, New York–Berlin, 1978, 744 pp. | MR | Zbl