A priori estimate result for an inverse problem of transport theory
Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 1, pp. 53-57 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We establish a priori estimate result for an inverse problem of transport theory. We refer to [1], where some existence and uniqueness results are proved.
@article{VMJ_2006_8_1_a6,
     author = {S. Lahrech},
     title = {A priori estimate result for an inverse problem of transport theory},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {53--57},
     year = {2006},
     volume = {8},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a6/}
}
TY  - JOUR
AU  - S. Lahrech
TI  - A priori estimate result for an inverse problem of transport theory
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2006
SP  - 53
EP  - 57
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a6/
LA  - en
ID  - VMJ_2006_8_1_a6
ER  - 
%0 Journal Article
%A S. Lahrech
%T A priori estimate result for an inverse problem of transport theory
%J Vladikavkazskij matematičeskij žurnal
%D 2006
%P 53-57
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a6/
%G en
%F VMJ_2006_8_1_a6
S. Lahrech. A priori estimate result for an inverse problem of transport theory. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 1, pp. 53-57. http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a6/

[1] Prilepko A. I., Ivankov A. L., Diff. equation, 21 (1985), 109–119 | MR | Zbl

[2] Prilepko A. I., Ivankov A. L., Diff. equation, 21 (1985), 870–885 | MR | Zbl

[3] Prilepko A. I., Ivankov A. L., “Inverse problems for an equation of transport theory”, Rapp. As urss., 1984, no. 276, 555–559 | MR | Zbl

[4] Iosida K., Functional analysis, Springer, Berlin a.o., 1965