A priori estimate result for an inverse problem of transport theory
Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 1, pp. 53-57
Cet article a éte moissonné depuis la source Math-Net.Ru
We establish a priori estimate result for an inverse problem of transport theory. We refer to [1], where some existence and uniqueness results are proved.
@article{VMJ_2006_8_1_a6,
author = {S. Lahrech},
title = {A priori estimate result for an inverse problem of transport theory},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {53--57},
year = {2006},
volume = {8},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a6/}
}
S. Lahrech. A priori estimate result for an inverse problem of transport theory. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 1, pp. 53-57. http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a6/
[1] Prilepko A. I., Ivankov A. L., Diff. equation, 21 (1985), 109–119 | MR | Zbl
[2] Prilepko A. I., Ivankov A. L., Diff. equation, 21 (1985), 870–885 | MR | Zbl
[3] Prilepko A. I., Ivankov A. L., “Inverse problems for an equation of transport theory”, Rapp. As urss., 1984, no. 276, 555–559 | MR | Zbl
[4] Iosida K., Functional analysis, Springer, Berlin a.o., 1965