The projection method for matrix multidimensional dual integral operators with homogeneous kernels
Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 1, pp. 3-10 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2006_8_1_a0,
     author = {O. G. Avsyankin},
     title = {The projection method for matrix multidimensional dual integral operators with homogeneous kernels},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--10},
     year = {2006},
     volume = {8},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a0/}
}
TY  - JOUR
AU  - O. G. Avsyankin
TI  - The projection method for matrix multidimensional dual integral operators with homogeneous kernels
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2006
SP  - 3
EP  - 10
VL  - 8
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a0/
LA  - ru
ID  - VMJ_2006_8_1_a0
ER  - 
%0 Journal Article
%A O. G. Avsyankin
%T The projection method for matrix multidimensional dual integral operators with homogeneous kernels
%J Vladikavkazskij matematičeskij žurnal
%D 2006
%P 3-10
%V 8
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a0/
%G ru
%F VMJ_2006_8_1_a0
O. G. Avsyankin. The projection method for matrix multidimensional dual integral operators with homogeneous kernels. Vladikavkazskij matematičeskij žurnal, Tome 8 (2006) no. 1, pp. 3-10. http://geodesic.mathdoc.fr/item/VMJ_2006_8_1_a0/

[1] Gokhberg I. Ts., Feldman I. A., Uravneniya v svertkakh i proektsionnye metody ikh resheniya, Nauka, M., 1971, 352 pp. | MR

[2] Böttcher A., Silbermann B., Analysis of Toeplitz Operators, Springer-Verlag, Berlin–Heidelberg–New York, 1990, 512 pp. | MR

[3] Prössdorf S., Silbermann B., Numerical Analysis for Integral and Related Operator Equations, Birkhäuser, Basel–Boston–Berlin, 1991, 476 pp. | MR | Zbl

[4] Hagen R., Roch S., Silbermann B., Spectral theory of approximation methods for convolution equations, Birkhäuser, Basel–Boston–Berlin, 1995, 427 pp. | MR

[5] Avsyankin O. G., Karapetyants N. K., “Mnogomernye integralnye operatory s odnorodnymi stepeni ($-n$) yadrami”, Dokl. RAN, 368:6 (1999), 727–729 | MR | Zbl

[6] Avsyankin O. G., Karapetyants N. K., “Proektsionnyi metod v teorii integralnykh operatorov s odnorodnymi yadrami”, Mat. zametki, 75:2 (2004), 163–172 | MR | Zbl

[7] Avsyankin O. G., “O primenenii proektsionnogo metoda k parnym integralnym operatoram s odnorodnymi yadrami”, Izv. vuzov. Matematika, 2002, no. 8, 3–7 | MR | Zbl

[8] Kozak A. V., “Lokalnyi printsip v teorii proektsionnykh metodov”, Dokl. AN SSSR, 212:6 (1973), 1287–1289 | MR | Zbl

[9] Karapetiants N., Samko S., Equations with Involutive Operators, Birkhäuser, Boston–Basel–Berlin, 2001, 427 pp. | MR | Zbl

[10] Avsyankin O. G., “Ob algebre parnykh integralnykh operatorov s odnorodnymi yadrami”, Mat. zametki, 73:4 (2003), 483–493 | MR | Zbl

[11] Samko S. G., Gipersingulyarnye integraly i ikh prilozheniya, Izd-vo RGU, Rostov-na-Donu, 1984, 208 pp. | MR | Zbl