@article{VMJ_2005_7_4_a4,
author = {A. G. Kusraev},
title = {On the representation of orthosymmetric bilinear operators in vector lattices},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {30--34},
year = {2005},
volume = {7},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a4/}
}
A. G. Kusraev. On the representation of orthosymmetric bilinear operators in vector lattices. Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 4, pp. 30-34. http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a4/
[1] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003, 519 pp. | MR
[2] Kusraev A. G., Tabuev S. N., “O bilineinykh operatorakh, sokhranyayuschikh diz'yunktnost”, Vladikavk. mat. zhurn., 6:1 (2004), 59–70 | MR
[3] Kusraev A. G., Shotaev G. N., “Bilineinye mazhoriruemye operatory”, Issledovaniya po kompleksnomu analizu, teorii operatorov i matematicheskomu modelirovaniyu, Izd-vo VNTs RAN, Vladikavkaz, 2004, 241–262 | MR
[4] Engelking R., Obschaya topologiya, Mir, M., 1986, 751 pp. | MR
[5] Buskes G. J. H. M., “Five theorems in the theory of Riesz spaces”, Circumspice, Katholieke Universiteit Nijmegen, Nijmegen, 2001, 3–10
[6] Buskes G. J. H. M., van Rooij A. C. M., “Almost $f$-algebras: commutativity and the Cauchy–Schwarz in equality”, Positivity, 4 (2000), 227–231 | DOI | MR | Zbl
[7] Buskes G. J. H. M., van Rooij A. C. M., “Almost $f$-algebras: structure and Dedekind completion”, Positivity, 4 (2000), 227–231 | DOI | MR | Zbl
[8] Fremlin D. H., “Tensor product of Archimedean vector lattices”, Amer. J. Math., 94 (1972), 777–798 | DOI | MR | Zbl
[9] van Gaans O. W., “The Riesz part of a positive bilinear from”, Circumspice, Katholieke Universiteit Nijmegen, Nijmegen, 2001, 19–30