Some open questions on positive operators in Banach lattices
Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 4, pp. 17-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Recently, some new results on asymptotic behaviour of positive operators in Banach lattices were obtained. Here we discuss some open problems related to these results.
@article{VMJ_2005_7_4_a2,
     author = {E. Yu. Emel'yanov},
     title = {Some open questions on positive operators in {Banach} lattices},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {17--21},
     year = {2005},
     volume = {7},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a2/}
}
TY  - JOUR
AU  - E. Yu. Emel'yanov
TI  - Some open questions on positive operators in Banach lattices
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2005
SP  - 17
EP  - 21
VL  - 7
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a2/
LA  - en
ID  - VMJ_2005_7_4_a2
ER  - 
%0 Journal Article
%A E. Yu. Emel'yanov
%T Some open questions on positive operators in Banach lattices
%J Vladikavkazskij matematičeskij žurnal
%D 2005
%P 17-21
%V 7
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a2/
%G en
%F VMJ_2005_7_4_a2
E. Yu. Emel'yanov. Some open questions on positive operators in Banach lattices. Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 4, pp. 17-21. http://geodesic.mathdoc.fr/item/VMJ_2005_7_4_a2/

[1] Abramovich Yu. A., “Isometries of normed lattices”, Optimizatsiya, 43(60) (1988), 74–80 | MR | Zbl

[2] Abramovich Yu. A., Aliprantis C. D., An invitation to operator theory, Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, RI, 2002, xiv+530 pp. | MR | Zbl

[3] Alpay S., Binhadjah A., Emel'yanov E. Yu., A Positive Doubly Power Bounded Operator on an $AL$-Space with a Nonpositive Inverse, Preprint

[4] Derriennic Y., Krengel U., “Subadditive mean ergodic theorems”, Ergodic Theory Dynamical Systems, 1:1 (1981), 33–48 | MR | Zbl

[5] Eisner T., Privat communication

[6] Emel'yanov E. Yu., “Banach lattices on which every power-bounded operator is mean ergodic”, Positivity, 1:4 (1997), 291–296 | DOI | MR

[7] Emel'yanov E. Yu., “A remark to a theorem of Yu. A. Abramovich”, Proc. Amer. Math. Soc., 132:3 (2004), 781–782 | DOI | MR

[8] Emel'yanov E. Yu., Wolff M. P. H., “Mean ergodicity on Banach lattices and Banach spaces”, Arch. Math. (Basel), 72:3 (1999), 214–218 | MR

[9] Fonf V. P., Lin M., Wojtaszczyk P., “Ergodic Characterization of Reflexivity of Banach spaces”, J. Funct. Anal., 187 (2001), 146–162 | DOI | MR | Zbl

[10] Huijsmans C. B., “Lattice-ordered division algebras”, Proc. Roy. Irish Acad. Sect., A92:2 (1992), 239–241 | MR | Zbl

[11] Komornik J., “Asymptotic periodicity of Markov and related operators”, Dynamics reported, Dynam. Report. Expositions Dynam. Systems (N.S.), 2, Springer, Berlin, 1993, 31–68 | MR | Zbl

[12] Kornfeld I., Lin M., “Weak almost periodicity of $L\sb 1$-contractions and coboundaries of non-singular transformations”, Studia Math., 138:3 (2000), 225–240 | MR | Zbl

[13] Krengel U., Ergodic Theorems, De Gruyter, Berlin–New York, 1985 | MR | Zbl

[14] Lyubich Yu. I., Introduction to the Theory of Banach Representations of Groups, Birkhäuser, Basel–Boston–Berlin, 1988 | MR

[15] Meyer-Nieberg P., Banach Lattices, Universitext, Springer-Verlag, Berlin, 1991 | MR | Zbl

[16] Räbiger F., “Ergodic Banach lattices”, Indag. Math. (N.S.), 1:4 (1990), 483–488 | DOI | MR | Zbl

[17] Schaefer H. H., Wolff M. P. H., Arendt W., “On lattice isomorphisms with positive real spectrum and groups of positive operators”, Math. Z., 164:2 (1978), 115–123 | DOI | MR | Zbl

[18] Sine R., “A mean ergodic theorem”, Proc. Amer. Math. Soc., 24:2 (1970), 438–439 | MR | Zbl

[19] Sine R., “A note on the ergodic properties of homeomorphisms”, Proc. Amer. Math. Soc., 57:1 (1976), 169–172 | MR | Zbl

[20] Sucheston L., “Open questions, probability in Banach spaces” (Oberwolfach, 1975), Lecture Notes in Math., 526, Springer, Berlin–Heidelberg–New York, 1976, 285–289 | MR

[21] Zaharopol R., “Mean ergodicity of power-bounded operators in countably order complete Banach lattices”, Math. Z., 192:1 (1986), 81–88 | DOI | MR | Zbl