@article{VMJ_2005_7_3_a9,
author = {E. M. Semenov and F. A. Sukochev},
title = {The {Banach-Saks} property},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {64--70},
year = {2005},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2005_7_3_a9/}
}
E. M. Semenov; F. A. Sukochev. The Banach-Saks property. Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 3, pp. 64-70. http://geodesic.mathdoc.fr/item/VMJ_2005_7_3_a9/
[1] Banakh S., Teoriya lineinykh operatsii, Regulyarnaya i khaotichnaya dinamika, Izhevsk, 2001, 272 pp.
[2] Johnson W. B., “On quotiens of $L_p$ which one quotients of $l_p$”, Compositio Math., 34 (1977), 69–89 | MR | Zbl
[3] Beauzamy B., “Banach–Saks properties and spreading models”, Math. Scand., 44 (1979), 357–384 | MR | Zbl
[4] Rakov S. A., “O pokazatele Banakha — Saksa nekotorykh banakhovykh prostranstv posledovatelnostei”, Mat. zametki, 32:5 (1982), 613–626 | MR
[5] Szlenk W., “Sur les suites faiblement convergentes dans l'space $L$”, Studia Math., 1965, no. 25, 337–341 | MR | Zbl
[6] Distel Dzh., Geometriya banakhovykh prostranstv, Vischa shkola, Kiev, 1980, 216 pp. | MR
[7] Baernstein A., “On reflexivity and summability”, Studia Math., 2:17 (1972), 91–94 | MR
[8] Lindenstrauss J., Tzafriri L., Classical Banach spaces, v. II, Function spaces, Springer-Verlag, Berlin, 1979, x+243 pp. | MR
[9] Krein S. G., Petunin Yu. I., Semenov E. M., Interpolyatsiya lineinykh operatorov, Nauka, M., 1978, 400 pp. | MR
[10] Dodds P. G., Semenov E. M., Sukochev F. A., “The Banach–Saks property in rearrangement invariant spaces”, Studia Math., 162(3) (2004), 263–294 | DOI | MR | Zbl
[11] Semenov E. M., Sukochev F. A., “The Banach–Saks index of rearrangement invariant spaces on $[0,1]$”, C. R. Acad. Sci. Paris, Ser. I, 337 (2003), 397–401 | MR | Zbl
[12] Semenov E. M., Sukochev F. A., “Indeks Banakha — Saksa”, Mat. sb., 195:2 (2004), 117–140 | MR | Zbl
[13] Astashkin S. V., Semenov E. M., Sukochev F. A., “The Banach–Saks $p$-property”, Math. Annalen, 332:4 (2005), 879–900 | DOI | MR | Zbl
[14] Arazy J., “Basic sequences, embeddings and the uniqueness of the symmetric structure in unitary matrix spaces”, J. Func. Anal., 40 (1981), 302–340 | DOI | MR | Zbl
[15] Dodds P., Dodds T., Sukochev F., “Banach–Saks properties in symmetric spaces of measurable operators”, Studia Math., 178:2 (2007), 125–166 | DOI | MR | Zbl
[16] Chilin V. I., Sukochev F. A., “Weak convergence in non-commutative symmetric spaces”, J. Operator Theory, 31 (1994), 35–65 | MR | Zbl
[17] Sukochev F. A., “Non-isomorphism of $L_p$-spaces associated with finite and infinite von Neumann algebras”, Proc. Amer. Math. Soc., 124 (1996), 1517–1527 | DOI | MR | Zbl
[18] Haagerup U., Rosenthal H. P., Sukochev F. A., Banach embedding properties of non-commutative $L^p-$spaces, Memoirs Amer. Math. Soc., 163, no. 776, 2003 | MR
[19] Raynaud Y., Xu Q., “On subspaces of non-commutative $L_p$-spaces”, J. Func. Anal., 203 (2003), 149–196 | DOI | MR | Zbl
[20] Randrianantoanina N., “Sequences in non-commutative $L_p$-spaces”, J. Operator Theory, 48 (2002), 255–272 | MR | Zbl