@article{VMJ_2005_7_3_a8,
author = {A. B. Sekerin and D. E. Lomakin},
title = {The complex {Radon} transform of distributions and analytic functionals},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {56--63},
year = {2005},
volume = {7},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2005_7_3_a8/}
}
A. B. Sekerin; D. E. Lomakin. The complex Radon transform of distributions and analytic functionals. Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 3, pp. 56-63. http://geodesic.mathdoc.fr/item/VMJ_2005_7_3_a8/
[1] Burbaki N., Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967, 396 pp. | MR
[2] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Nauka, M., 1962, 656 pp.
[3] Sekerin A. B., Primeneniya preobrazovaniya Radona v teorii approksimatsii, Bashkirsk. nauchn. tsentr UrO AN SSSR, Ufa, 1991, 192 pp.
[4] Khelgason S., Preobrazovanie Radona, Mir, M., 1983, 152 pp. | MR
[5] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987, 736 pp. | MR
[6] Khermander L., Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1986, 456 pp. | MR
[7] Arsove M. G., “Functions, representiable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75:2 (1953), 327–365 | MR | Zbl
[8] Hertle A., “Continuity of the Radon transform and its inverse on Euclidean spaces”, Math. Zeitschr., 184 (1983), 165–192 | DOI | MR
[9] Hertle A., “On the range of the Radon transform and its dual”, Math. Ann., 267:1 (1984), 91–99 | DOI | MR | Zbl
[10] Ludwig D., “The Radon transform on Euclidean space”, Comm. Pure Appl. Math., 19 (1966), 49–81 | DOI | MR | Zbl
[11] Sekerin A. B., “The support theorem for the complex Radon transform of distributions”, Collectanea Mathematica, 55:3 (2004), 243–251 | MR | Zbl