The complex Radon transform of distributions and analytic functionals
Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 3, pp. 56-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2005_7_3_a8,
     author = {A. B. Sekerin and D. E. Lomakin},
     title = {The complex {Radon} transform of distributions and analytic functionals},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {56--63},
     year = {2005},
     volume = {7},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2005_7_3_a8/}
}
TY  - JOUR
AU  - A. B. Sekerin
AU  - D. E. Lomakin
TI  - The complex Radon transform of distributions and analytic functionals
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2005
SP  - 56
EP  - 63
VL  - 7
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2005_7_3_a8/
LA  - ru
ID  - VMJ_2005_7_3_a8
ER  - 
%0 Journal Article
%A A. B. Sekerin
%A D. E. Lomakin
%T The complex Radon transform of distributions and analytic functionals
%J Vladikavkazskij matematičeskij žurnal
%D 2005
%P 56-63
%V 7
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2005_7_3_a8/
%G ru
%F VMJ_2005_7_3_a8
A. B. Sekerin; D. E. Lomakin. The complex Radon transform of distributions and analytic functionals. Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 3, pp. 56-63. http://geodesic.mathdoc.fr/item/VMJ_2005_7_3_a8/

[1] Burbaki N., Integrirovanie. Mery, integrirovanie mer, Nauka, M., 1967, 396 pp. | MR

[2] Gelfand I. M., Graev M. I., Vilenkin N. Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, Nauka, M., 1962, 656 pp.

[3] Sekerin A. B., Primeneniya preobrazovaniya Radona v teorii approksimatsii, Bashkirsk. nauchn. tsentr UrO AN SSSR, Ufa, 1991, 192 pp.

[4] Khelgason S., Preobrazovanie Radona, Mir, M., 1983, 152 pp. | MR

[5] Khelgason S., Gruppy i geometricheskii analiz, Mir, M., 1987, 736 pp. | MR

[6] Khermander L., Differentsialnye operatory s postoyannymi koeffitsientami, Mir, M., 1986, 456 pp. | MR

[7] Arsove M. G., “Functions, representiable as differences of subharmonic functions”, Trans. Amer. Math. Soc., 75:2 (1953), 327–365 | MR | Zbl

[8] Hertle A., “Continuity of the Radon transform and its inverse on Euclidean spaces”, Math. Zeitschr., 184 (1983), 165–192 | DOI | MR

[9] Hertle A., “On the range of the Radon transform and its dual”, Math. Ann., 267:1 (1984), 91–99 | DOI | MR | Zbl

[10] Ludwig D., “The Radon transform on Euclidean space”, Comm. Pure Appl. Math., 19 (1966), 49–81 | DOI | MR | Zbl

[11] Sekerin A. B., “The support theorem for the complex Radon transform of distributions”, Collectanea Mathematica, 55:3 (2004), 243–251 | MR | Zbl