Bernstein--Nikolski\u{\i} type inequality in Lorentz spaces and related topics
Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 2, pp. 90-100
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper we study the Bernstein–Nikolskiĭ type inequality, the inverse Bernstein theorem and some properties of functions and their spectrum in Lorentz spaces $L^{p,q}(\mathbb{R}^n)$.
@article{VMJ_2005_7_2_a9,
author = {H. H. Bang and N. M. Cong},
title = {Bernstein--Nikolski\u{\i} type inequality in {Lorentz} spaces and related topics},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {90--100},
publisher = {mathdoc},
volume = {7},
number = {2},
year = {2005},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2005_7_2_a9/}
}
TY - JOUR
AU - H. H. Bang
AU - N. M. Cong
TI - Bernstein--Nikolski\u{\i} type inequality in Lorentz spaces and related topics
JO - Vladikavkazskij matematičeskij žurnal
PY - 2005
SP - 90
EP - 100
VL - 7
IS - 2
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/VMJ_2005_7_2_a9/
LA - en
ID - VMJ_2005_7_2_a9
ER -
H. H. Bang; N. M. Cong. Bernstein--Nikolski\u{\i} type inequality in Lorentz spaces and related topics. Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 2, pp. 90-100. http://geodesic.mathdoc.fr/item/VMJ_2005_7_2_a9/