On an extended class of infinitesimal bendings of regular locally convex surfaces
Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 1, pp. 61-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2005_7_1_a6,
     author = {E. V. Tyurikov},
     title = {On an extended class of infinitesimal bendings of regular locally convex surfaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {61--66},
     year = {2005},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2005_7_1_a6/}
}
TY  - JOUR
AU  - E. V. Tyurikov
TI  - On an extended class of infinitesimal bendings of regular locally convex surfaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2005
SP  - 61
EP  - 66
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2005_7_1_a6/
LA  - ru
ID  - VMJ_2005_7_1_a6
ER  - 
%0 Journal Article
%A E. V. Tyurikov
%T On an extended class of infinitesimal bendings of regular locally convex surfaces
%J Vladikavkazskij matematičeskij žurnal
%D 2005
%P 61-66
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2005_7_1_a6/
%G ru
%F VMJ_2005_7_1_a6
E. V. Tyurikov. On an extended class of infinitesimal bendings of regular locally convex surfaces. Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 1, pp. 61-66. http://geodesic.mathdoc.fr/item/VMJ_2005_7_1_a6/

[1] Vekua I. N., Obobschennye analiticheskie funktsii, Fizmatgiz, M., 1959, 628 pp. | MR | Zbl

[2] Tyurikov E. V., “Kraevye zadachi teorii b.m. izgibanii poverkhnostei”, Mat. sb., 1977, no. 3 (7), 445–462 | MR | Zbl

[3] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Fizmatgiz, M., 1962, 599 pp.

[4] Tyurikov E. V., “Kraevaya zadacha Gilberta dlya obobschennykh analiticheskikh funktsii s razryvnym koeffitsientom v granichnom uslovii”, Izv. Sev.-Kav. nauchn. tsentra vyssh. shk. Estestv. nauki, 1975, no. 4, 104–105 | MR