Absolutely representing systems of exponentials with imaginary exponents in ultrajet spaces of normal type and the extension of Whitney functions
Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 1, pp. 3-15 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2005_7_1_a0,
     author = {D. A. Abanina},
     title = {Absolutely representing systems of exponentials with imaginary exponents in ultrajet spaces of normal type and the extension of {Whitney} functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--15},
     year = {2005},
     volume = {7},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2005_7_1_a0/}
}
TY  - JOUR
AU  - D. A. Abanina
TI  - Absolutely representing systems of exponentials with imaginary exponents in ultrajet spaces of normal type and the extension of Whitney functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2005
SP  - 3
EP  - 15
VL  - 7
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2005_7_1_a0/
LA  - ru
ID  - VMJ_2005_7_1_a0
ER  - 
%0 Journal Article
%A D. A. Abanina
%T Absolutely representing systems of exponentials with imaginary exponents in ultrajet spaces of normal type and the extension of Whitney functions
%J Vladikavkazskij matematičeskij žurnal
%D 2005
%P 3-15
%V 7
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2005_7_1_a0/
%G ru
%F VMJ_2005_7_1_a0
D. A. Abanina. Absolutely representing systems of exponentials with imaginary exponents in ultrajet spaces of normal type and the extension of Whitney functions. Vladikavkazskij matematičeskij žurnal, Tome 7 (2005) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/VMJ_2005_7_1_a0/

[1] Korobeinik Yu. F., “Absolyutno predstavlyayuschie sistemy eksponent s mnimymi pokazatelyami v prostranstvakh beskonechno differentsiruemykh funktsii i prodolzhimost po Borelyu — Uitni”, Aktualnye problemy matematicheskogo analiza, Izd-vo GinGo, Rostov-na-Donu, 2000, 8–22 | MR

[2] Korobeinik Yu. F., “On absolutely representing systems in spaces of infinitely differentiable functions”, Stud. Math., 139:2 (2000), 175–188 | MR | Zbl

[3] Abanina D. A., “Ob analogakh teoremy Borelya dlya prostranstv ultradifferentsiruemykh funktsii normalnogo tipa”, Izv. vuzov. Matematika, 2003, no. 8, 63–66 | MR | Zbl

[4] Abanina D. A., “On Borel's theorem for spaces of ultradifferentiable functions of mean type”, Result. Math., 44:3/4 (2003), 195–213 | MR | Zbl

[5] Braun R. W., Meise R., Taylor B. A., “Ultradifferentiable functions and Fourier analysis”, Result. Math., 17 (1990), 206–237 | MR | Zbl

[6] Korobeinik Yu. F., “Ob odnoi dvoistvennoi zadache. I: Obschie rezultaty. Prilozheniya k prostranstvam Freshe”, Mat. sb., 97:2 (1975), 193–229 | MR | Zbl

[7] Korobeinik Yu. F., “Predstavlyayuschie sistemy”, Uspekhi mat. nauk, 36:1 (1981), 73–126 | MR | Zbl

[8] Seneta E., Pravilno menyayuschiesya funktsii, Nauka, M., 1985, 141 pp. | MR | Zbl

[9] Robertson A. P., Robertson V. Dzh., Topologicheskie vektornye prostranstva, Mir, M., 1967, 257 pp. | MR | Zbl

[10] Abanin A. V., Tischenko E. S., “Prostranstva ultradifferentsiruemykh funktsii i obobschenie teoremy Peli — Vinera — Shvartsa”, Izv. vuzov. Sev.-Kav. region. Estestv. nauki, 1997, no. 2, 5–8 | MR | Zbl

[11] Edvards R., Funktsionalnyi analiz, Nauka, M., 1969, 1071 pp.