On the properties of solutions of a class of systems of nonlinear differential equations on graphs
Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 4, pp. 17-24 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2004_6_4_a3,
     author = {A. P. Buslaev and A. G. Tatashev and M. V. Yashina},
     title = {On the properties of solutions of a class of systems of nonlinear differential equations on graphs},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {17--24},
     year = {2004},
     volume = {6},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_4_a3/}
}
TY  - JOUR
AU  - A. P. Buslaev
AU  - A. G. Tatashev
AU  - M. V. Yashina
TI  - On the properties of solutions of a class of systems of nonlinear differential equations on graphs
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2004
SP  - 17
EP  - 24
VL  - 6
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_2004_6_4_a3/
LA  - ru
ID  - VMJ_2004_6_4_a3
ER  - 
%0 Journal Article
%A A. P. Buslaev
%A A. G. Tatashev
%A M. V. Yashina
%T On the properties of solutions of a class of systems of nonlinear differential equations on graphs
%J Vladikavkazskij matematičeskij žurnal
%D 2004
%P 17-24
%V 6
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_2004_6_4_a3/
%G ru
%F VMJ_2004_6_4_a3
A. P. Buslaev; A. G. Tatashev; M. V. Yashina. On the properties of solutions of a class of systems of nonlinear differential equations on graphs. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 4, pp. 17-24. http://geodesic.mathdoc.fr/item/VMJ_2004_6_4_a3/

[1] Dryu D., Teoriya transportnykh potokov i upravlenie imi, Transport, M., 1972, 424 pp.

[2] Smirnov N. N., Kiselev A. B., Nikitin V. F., Yumashev M. V., Matematicheskoe modelirovanie avtotransportnykh potokov, Izd-vo MGU, M., 1999, 30 pp.

[3] Smirnov N. N., Kiselev A. B., Nikitin V. F., Yumashev M. V., “Matematicheskoe modelirovanie avtomobilnykh potokov na magistralyakh”, Vestnik MGU, ser. 1. Matemat. i mekh., 2000, no. 4, 39–44 | MR | Zbl

[4] Nicaise S., “Some results on spectral theory over networks, applied to nerve impulse transmission”, Lecture Notes in Math., 1171, Springer–Verlag, 1985, 532–541 | MR

[5] Pokornyi Yu. V., Povorotova E. N., Penkin O. M., “O spektre nekotorykh vektornykh kraevykh zadach”, Voprosy kachestvennoi teorii differentsialnykh uravnenii, ed. V. M. Matrosov, Nauka, Novosibirsk, 1988, 109–113 | MR

[6] Lubashevski I., Mahnke R., Wagner P., Kalenkov S., “Long-lived states in synchronized traffic flow. Empirical prompt and dynamical trap model”, Phys. Rev. E, 66 (2002), 016117 | DOI

[7] Lubashevsky I., Wagner P., Mahnke R., “Bounded rational driver models”, Eur. Phys. J., 32 (2003), 243–247

[8] Buslaev A. P., Novikov A. V., Prikhodko V. M., Tatashev A. G., Yashina M. V., Veroyatnostnye i imitatsionnye podkhody k optimizatsii avtodorozhnogo dvizheniya, ed. V. M. Prikhodko, Mir, M., 2003, 368 pp.

[9] Trikomi F., Differentsialnye uravneniya, IL, M., 1962, 351 pp.

[10] Lyapunov A. M., Obschaya zadacha ob ustoichivosti dvizheniya, GITTL, M., 1950, 471 pp.