On band-preserving operators
Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 3, pp. 47-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2004_6_3_a6,
     author = {A. G. Kusraev},
     title = {On band-preserving operators},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {47--58},
     year = {2004},
     volume = {6},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a6/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - On band-preserving operators
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2004
SP  - 47
EP  - 58
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a6/
LA  - ru
ID  - VMJ_2004_6_3_a6
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T On band-preserving operators
%J Vladikavkazskij matematičeskij žurnal
%D 2004
%P 47-58
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a6/
%G ru
%F VMJ_2004_6_3_a6
A. G. Kusraev. On band-preserving operators. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 3, pp. 47-58. http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a6/

[1] Abramovich Yu. A., Veksler A. I., Koldunov A. V., “Operatory, sokhranyayuschie diz'yunktnost”, Dokl. AN SSSR, 248:5 (1979), 1033–1036 | MR | Zbl

[2] Abramovich Yu. A., Veksler A. I., Koldunov A. V., “Operatory, sokhranyayuschie diz'yunktnost, ikh nepreryvnost i multiplikativnoe predstavlenie”, Lineinye operatory i ikh prilozheniya, Mezhvuz. sb. nauch. tr., LGPI, L., 1981, 3–34

[3] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, GIFML, M., 1961, 407 pp. | MR

[4] Atsel Ya., Dombr Zh., Funktsionalnye uravneniya s neskolkimi peremennymi, Fizmatlit, M., 2003, 432 pp.

[5] Gordon E. I., Elementy bulevoznachnogo analiza, Izd-vo Gork. un-ta, Gorkii, 1991, 91 pp.

[6] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Izd-vo IM SO RAN, Novosibirsk, 1995, 63–211 | MR

[7] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003, 619 pp. | MR

[8] Kluwer, Dordrecht, 1999, 322 pp. | MR | Zbl | Zbl

[9] Sikorskii R., Bulevy algebry, Mir, M., 1969, 375 pp. | MR

[10] Aliprantis C. D., Burkinshaw O., Positive Operators, Acad. press, New York, 1985, xvi+367 pp. | MR | Zbl

[11] Abramovich Yu. A., Wickstead A. W., “The regularity of order bounded operators into $C(K)$, II”, Quart. J. Math. Oxford. Ser. 2, 44 (1993), 257–270 | DOI | MR | Zbl

[12] Bell J. L., Boolean-valued Models and Independence Proofs in Set Theory, Clarendon press, New York etc., 1985, xx+165 pp. | MR | Zbl

[13] Gutman A. E., “Locally one-dimensional $K$-spaces and $\sigma$-distributive Boolean algebras”, Siberian Adv. Math., 5:2 (1995), 99–121 | MR

[14] Gutman A. E., “Disjointness preserving operators”, Vector Lattices and Integral Operators, ed. S. S. Kutateladze, Kluwer, Dordrecht etc., 1996, 361–454

[15] McPolin P. T. N., Wickstead A. W., “The order boundedness of band preserving operators on uniformly complete vector lattices”, Math. Proc. Cambridge Philos. Soc., 97:3 (1985), 481–487 | DOI | MR | Zbl

[16] Wickstead A. W., “Representation and duality of multiplication operators on Archimedean Riesz spaces”, Compositio Math., 35:3 (1977), 225–238 | MR | Zbl