@article{VMJ_2004_6_3_a3,
author = {I. G. Ganiev and K. K. Kudaǐbergenov},
title = {Banach's theorem on an inverse operator in {Banach-Kantorovich} spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {21--25},
year = {2004},
volume = {6},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a3/}
}
I. G. Ganiev; K. K. Kudaǐbergenov. Banach's theorem on an inverse operator in Banach-Kantorovich spaces. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 3, pp. 21-25. http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a3/
[1] Gutman A. E., “Banakhovy rassloeniya v teorii reshetochno normirovannykh prostranstv”, Lineinye operatory, soglasovannye s poryadkom, Izd-vo IM SO RAN, Novosibirsk, 1995, 63–211 | MR
[2] Ganiev I. G., Kudaybergenov K. K., “Measurable bundles of compact operators”, Methods of Func. An. and Topology, 7:4 (2001), 1–6 | MR
[3] Ganiev I. G., “Opisanie ogranichennykh operatorov v prostranstvakh Banakha — Kantorovicha”, Aktualnye problemy teoreticheskoi i prikladnoi mataematiki, Materialy mezhdunarodnoi konferentsii, Samarkand, 1997, 3–4
[4] Kusraev A. G., Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985, 256 pp. | MR | Zbl
[5] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003, 619 pp. | MR
[6] Levin V. L., Vypuklyi analiz v prostranstvakh izmerimykh funktsii i ego primenenie v matematike i ekonomike, Nauka, M., 1985, 352 pp. | MR