A Caccioppoli type inequality
Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 3, pp. 7-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Caccioppoli type inequality for solutions of the quasi-elliptic equations is established.
@article{VMJ_2004_6_3_a1,
     author = {M. S. Alborova},
     title = {A {Caccioppoli} type inequality},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {7--11},
     year = {2004},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a1/}
}
TY  - JOUR
AU  - M. S. Alborova
TI  - A Caccioppoli type inequality
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2004
SP  - 7
EP  - 11
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a1/
LA  - en
ID  - VMJ_2004_6_3_a1
ER  - 
%0 Journal Article
%A M. S. Alborova
%T A Caccioppoli type inequality
%J Vladikavkazskij matematičeskij žurnal
%D 2004
%P 7-11
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a1/
%G en
%F VMJ_2004_6_3_a1
M. S. Alborova. A Caccioppoli type inequality. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 3, pp. 7-11. http://geodesic.mathdoc.fr/item/VMJ_2004_6_3_a1/

[1] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 480 pp. | MR | Zbl

[2] Vodopyanov S. K., “Anizotropnye prostranstva differentsiruemykh funktsii i kvazikonformnye otobrazheniya”, Tezisy dokl. XI Vsesoyuznoi shkoly po teorii operatorov v funktsionalnykh prostranstvakh, Ch. 2, Chelyabinsk, 1986, 23

[3] Alborova M. S., Vodopyanov S. K., Ustranimye osobennosti dlya ogranichennykh reshenii kvaziellipticheskikh uravnenii, Dep. v VINITI 04.02.87, No 804-B87, Novosibirsk, 1987, 44 pp.

[4] Reshetnyak Yu. G., “O ponyatii emkosti v teorii funktsii s obobschennymi proizvodnymi”, Sib. mat. zhurn., 10:5 (1969), 1109–1139

[5] Duzaar F., Gastel A., Grotowski J. F., “Optimal partial regularity for nonlinear elliptic systems of higher order”, J. Math. Sci. Univ. Tokyo, 8 (2001), 463–499 | MR | Zbl