On $CD_0(K)$-spaces
Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 71-73 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We present an elementary proof of the (known) fact that a $CD_0(K)$-space is a Banach lattice and is lattice isometrically isomorphic to a particular $C(\widetilde{K})$ for some compact space $\widetilde{K}$.
@article{VMJ_2004_6_1_a9,
     author = {V. G. Troitsky},
     title = {On $CD_0(K)$-spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {71--73},
     year = {2004},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a9/}
}
TY  - JOUR
AU  - V. G. Troitsky
TI  - On $CD_0(K)$-spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2004
SP  - 71
EP  - 73
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a9/
LA  - en
ID  - VMJ_2004_6_1_a9
ER  - 
%0 Journal Article
%A V. G. Troitsky
%T On $CD_0(K)$-spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2004
%P 71-73
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a9/
%G en
%F VMJ_2004_6_1_a9
V. G. Troitsky. On $CD_0(K)$-spaces. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 71-73. http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a9/

[1] Alpay Ş., Ercan Z., “$CD_0(K,E)$ and $CD_\omega(K,E)$-spaces as Banach lattices”, Positivity and its applications (Ankara, 1998), Positivity, 4, no. 3, 2000, 213–225 | DOI | MR | Zbl

[2] Abramovich Y. A., Wickstead A. W., “Regular operators from and into a small Riesz space”, Indag. Math. N.S., 2:3 (1991), 257–274 | DOI | MR | Zbl

[3] Abramovich Y. A., Wickstead A. W., “The regularity of order bounded operators into $C(K)$, II”, Quart. J. Math. Oxford Ser. 2, 44:175 (1993), 257–270 | DOI | MR | Zbl

[4] Abramovich Y. A., Wickstead A. W., “Remarkable classes of unital $AM$-spaces”, J. Math. Anal. Appl., 180:2 (1993), 398–411 | DOI | MR | Zbl

[5] Ercan Z., “A concrete descreption of $CD_0(K)$-spaces as $C(X)$-spaces and its applications”, Proc. Amer. Math. Soc., 132 (2004), 1761–1763 | DOI | MR | Zbl