@article{VMJ_2004_6_1_a9,
author = {V. G. Troitsky},
title = {On $CD_0(K)$-spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {71--73},
year = {2004},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a9/}
}
V. G. Troitsky. On $CD_0(K)$-spaces. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 71-73. http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a9/
[1] Alpay Ş., Ercan Z., “$CD_0(K,E)$ and $CD_\omega(K,E)$-spaces as Banach lattices”, Positivity and its applications (Ankara, 1998), Positivity, 4, no. 3, 2000, 213–225 | DOI | MR | Zbl
[2] Abramovich Y. A., Wickstead A. W., “Regular operators from and into a small Riesz space”, Indag. Math. N.S., 2:3 (1991), 257–274 | DOI | MR | Zbl
[3] Abramovich Y. A., Wickstead A. W., “The regularity of order bounded operators into $C(K)$, II”, Quart. J. Math. Oxford Ser. 2, 44:175 (1993), 257–270 | DOI | MR | Zbl
[4] Abramovich Y. A., Wickstead A. W., “Remarkable classes of unital $AM$-spaces”, J. Math. Anal. Appl., 180:2 (1993), 398–411 | DOI | MR | Zbl
[5] Ercan Z., “A concrete descreption of $CD_0(K)$-spaces as $C(X)$-spaces and its applications”, Proc. Amer. Math. Soc., 132 (2004), 1761–1763 | DOI | MR | Zbl