On bilinear operators that preserve disjunction
Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 58-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2004_6_1_a8,
     author = {A. G. Kusraev and S. N. Tabuev},
     title = {On bilinear operators that preserve disjunction},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {58--70},
     year = {2004},
     volume = {6},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a8/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - S. N. Tabuev
TI  - On bilinear operators that preserve disjunction
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2004
SP  - 58
EP  - 70
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a8/
LA  - ru
ID  - VMJ_2004_6_1_a8
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A S. N. Tabuev
%T On bilinear operators that preserve disjunction
%J Vladikavkazskij matematičeskij žurnal
%D 2004
%P 58-70
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a8/
%G ru
%F VMJ_2004_6_1_a8
A. G. Kusraev; S. N. Tabuev. On bilinear operators that preserve disjunction. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 58-70. http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a8/

[1] Abramovich Yu. A., “In'ektivnye obolochki normirovannykh struktur”, Dokl. AN SSSR, 197:4 (1971), 743–745 | Zbl

[2] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, GIFML, M., 1961, 407 pp. | MR

[3] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Funktsionalnyi analiz v poluuporyadochennykh prostranstvakh, Gostekhizdat, M.–L., 1950, 548 pp. | Zbl

[4] Kusraev A. G., Mazhorirumye operatory, Nauka, M., 2003, 619 pp. | MR

[5] Kusraev A. G., Shotaev G. N., “O bilinenykh mazhoriruemykh operatorakh”, Issledovaniya po kompleksnomu analizu, teorii operatorov i matematicheskomu modelirovaniyu, eds. Yu. F. Korobeinik, A. G. Kusraev, Izd-vo VNTs RAN, Vladikavkaz, 2004, 241–262

[6] Aliprantis C. D., Burkinshaw O., Positive operators, Acad. press, New York, 1985, xvi+367 pp. | MR | Zbl

[7] Fremlin D. H., “Tensor product of Archimedean vector lattices”, Amer. J. Math., 94 (1972), 777–798 | DOI | MR | Zbl

[8] Fremlin D. H., “Tensor products of Banach lattices”, Math. Ann., 211 (1974), 87–106 | DOI | MR | Zbl

[9] van Gaans O. W., “The Riesz part of a positive bilinear form”, Circumspice, Katholieke Universiteit Nijmegen, Nijmegen, 2001, 19–30

[10] Kusraev A. G., Kutateladze S. S., On the calculus of order bounded operators, Preprint No 123, Nauka, Novosibirsk, 2003, 14 pp.

[11] Schaefer H. H., Banach lattices and positive operators, Springer, Berlin etc., 1974, xi+376 pp. | MR | Zbl

[12] Schwarz H.-V., Banach lattices and operators, Teubner, Leipzig, 1984, 208 pp. | MR | Zbl

[13] Zaanen A. C., Riesz spaces, v. 2, North-Holland, Amsterdam etc., 1983, 720 pp. | MR | Zbl