@article{VMJ_2004_6_1_a6,
author = {A. A. Rakhimov and A. A. Katz and R. Dadakhodjaev},
title = {On ideal of compact operators in real factors},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {42--45},
year = {2004},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a6/}
}
A. A. Rakhimov; A. A. Katz; R. Dadakhodjaev. On ideal of compact operators in real factors. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 42-45. http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a6/
[1] Ajupov Sh. A., Rakhimov A. A., Usmanov Sh. M., Jordan real and Li structures in operator algebras, Kluwer, Dordrecht, 2001, 225 pp.
[2] Breuer M., “Fredholm theories in von Neumann algebras, I”, Math. Ann., 178 (1968), 243–254 | DOI | MR | Zbl
[3] Connes A., “Une classification des facteurs de type III”, Ann. Sc. Ec. Norm. Sup., 6 (1973), 133–252 | MR | Zbl
[4] Halpern H., Kaftal V., “Compact operators in type III$_{\lambda}$ and type III$_{0}$ factors”, Math. Ann., 273 (1986), 251–270 | DOI | MR | Zbl
[5] Rakhimov A. A., Katz A. A., Dadakhodjaev R., “The ideal of compact operators in real factors of types I and II”, Mat. Tr., 5:1 (2002), 129–134 (in Russian) | MR | Zbl
[6] Sonis M. G., “On a class of operators in von Neumann algebras with Segal measures”, Math. USSR Sb., 13 (1971), 344–359 | DOI | Zbl
[7] Stacey P. J., “Real structure in $\sigma$-finite factors of type III$_{\lambda }$, where $0\lambda 1$”, Proc. London Math. Soc. 3, 47 (1983), 275–284 | DOI | MR | Zbl