On minimax theorems for sets closed in measure
Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 29-36
Voir la notice de l'article provenant de la source Math-Net.Ru
This article is devoted to the Ky Fan minimax theorem for convex sets closed in measure in $L^1$. In general, these sets do not carry any formal compactness properties for any reasonable topology.
@article{VMJ_2004_6_1_a4,
author = {A. V. Bukhvalov and A. Martellotti},
title = {On minimax theorems for sets closed in measure},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {29--36},
publisher = {mathdoc},
volume = {6},
number = {1},
year = {2004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/}
}
A. V. Bukhvalov; A. Martellotti. On minimax theorems for sets closed in measure. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/