On minimax theorems for sets closed in measure
Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 29-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This article is devoted to the Ky Fan minimax theorem for convex sets closed in measure in $L^1$. In general, these sets do not carry any formal compactness properties for any reasonable topology.
@article{VMJ_2004_6_1_a4,
     author = {A. V. Bukhvalov and A. Martellotti},
     title = {On minimax theorems for sets closed in measure},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {29--36},
     year = {2004},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/}
}
TY  - JOUR
AU  - A. V. Bukhvalov
AU  - A. Martellotti
TI  - On minimax theorems for sets closed in measure
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2004
SP  - 29
EP  - 36
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/
LA  - en
ID  - VMJ_2004_6_1_a4
ER  - 
%0 Journal Article
%A A. V. Bukhvalov
%A A. Martellotti
%T On minimax theorems for sets closed in measure
%J Vladikavkazskij matematičeskij žurnal
%D 2004
%P 29-36
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/
%G en
%F VMJ_2004_6_1_a4
A. V. Bukhvalov; A. Martellotti. On minimax theorems for sets closed in measure. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/

[1] Soviet Math. (Iz. VUZ) | MR

[2] Berezhnoi E. I., “On a theorem by G. Ya. Lozanovskii”, Qualitative and approximate methods of the investigation of operator equations, Jaroslavl', 1983, 3–18 (in Russian) | MR

[3] Besbes M., “Points fixes des contractions définies sur un convexe $L^0$-fermé de $L^1$”, C. R. Acad. Sci. Paris. Série I, 311 (1990), 243–246 | MR | Zbl

[4] Borovkov A. A., Mathematical Statistics: Special Topics, Nauka, Moscow, 1984 (in Russian) | Zbl

[5] Borwein J. M., Zhuang D., “On Fan's minimax theorem”, Math. Progr., 34 (1986), 232–234 | DOI | MR | Zbl

[6] Bukhvalov A. V., “Optimization without compactness, and its applications”, Operator Theory in Function Spaces and Banach Lattices, Operator Theory. Advances and Applications, 75, Birkhäuser, Basel, 1995, 95–112 | MR

[7] Soviet Math. Dokl., 14 (1973), 1563–1565 | MR | Zbl

[8] Delbaen F., Schachermayer W., “A general version of the fundamental theorem of asset pricing”, Math. Ann., 300 (1994), 463–520 | DOI | MR | Zbl

[9] Granas A., Liu F. C., “Some minimax theorems without convexity”, Non Linear and Convex Analysis, Proceedings in Honor of Ky Fan, Lecture Notes in Pure and Applied mathematics, 107, eds. B. L. Lin, S. Simons, Dekker, New York, 1987, 61–75 | MR

[10] Janovskii L. P., “Some theorems of nonlinear analysis in non-reflexive Banach spaces”, Proc. XV-th School on the Theory of Operators in Function Spaces, Part II, Ul'yanovsk, 1990, 136 (in Russian)

[11] Pergamon Press, Oxford, 1982 | MR | Zbl | Zbl

[12] Lehmann E. L., Casella G., Theory of Point Estimation, Springer, 1998 | MR

[13] Soviet Math. Dokl., 16:5 (1976), 1384–1388 | MR | Zbl

[14] Siberian. Math. J., 14 (1973), 97–108 | DOI | MR | Zbl

[15] Soviet Math. (Iz. VUZ) | MR | Zbl

[16] Lozanovskii G. Ya., “Transformations of ideal Banach spaces by means of concave functions”, Qualitative and Approximate Methods of the Investigation of Operator Equations, 3, Jaroslavl', 1978, 122–147 (in Russian) | MR

[17] Martellotti A., Salvadori A., “A minimax theorem for functions taking values in a Riesz space”, J. Math. Anal. Appl., 133 (1988), 1–13 | DOI | MR | Zbl

[18] Maurey B., Théorèmes de factorisation pour les opérateurs linéaires à valeurs dans les espaces $L_p$, Astérisque, 11, 1974 | MR | Zbl

[19] Reisner S., “On two theorems of Lozanovskii concerning intermediate Banach lattices”, Lect. Notes Math., 1317, 1988, 67–83 | MR | Zbl

[20] Werner D., “A proof of the Markov–Kakutani fixed point theorem via the Hahn–Banach theorem”, Extracta Mathematica, 8 (1993), 37–38 | MR | Zbl