On minimax theorems for sets closed in measure
Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 29-36

Voir la notice de l'article provenant de la source Math-Net.Ru

This article is devoted to the Ky Fan minimax theorem for convex sets closed in measure in $L^1$. In general, these sets do not carry any formal compactness properties for any reasonable topology.
@article{VMJ_2004_6_1_a4,
     author = {A. V. Bukhvalov and A. Martellotti},
     title = {On minimax theorems for sets closed in measure},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {29--36},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/}
}
TY  - JOUR
AU  - A. V. Bukhvalov
AU  - A. Martellotti
TI  - On minimax theorems for sets closed in measure
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2004
SP  - 29
EP  - 36
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/
LA  - en
ID  - VMJ_2004_6_1_a4
ER  - 
%0 Journal Article
%A A. V. Bukhvalov
%A A. Martellotti
%T On minimax theorems for sets closed in measure
%J Vladikavkazskij matematičeskij žurnal
%D 2004
%P 29-36
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/
%G en
%F VMJ_2004_6_1_a4
A. V. Bukhvalov; A. Martellotti. On minimax theorems for sets closed in measure. Vladikavkazskij matematičeskij žurnal, Tome 6 (2004) no. 1, pp. 29-36. http://geodesic.mathdoc.fr/item/VMJ_2004_6_1_a4/