@article{VMJ_2003_5_3_a4,
author = {A. A. Katz},
title = {On the weak convergence of operators iterations in von {Neumann} algebras},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {39--45},
year = {2003},
volume = {5},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2003_5_3_a4/}
}
A. A. Katz. On the weak convergence of operators iterations in von Neumann algebras. Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 3, pp. 39-45. http://geodesic.mathdoc.fr/item/VMJ_2003_5_3_a4/
[1] Bratteli O., Robinson D., Operator Algebras and Quantum Statistical Mechanics, v. I, Texts and Monographs in Physics, Springer-Verlag, New York–Heidelberg, 1979, 500 pp. | MR | Zbl
[2] Dixmier J., Von Neumann Algebras, North-Holland Mathematical Library, 27, North-Holland Publishing Co., Amsterdam–New York, 1981, 437 pp. | MR | Zbl
[3] Dunford N., Schwartz J. T., Linear Operators, v. I, Pure and Applied Mathematics, 7, Interscience Publishers, Inc., New York; Interscience Publishers, Ltd., London, 1958, 858 pp. | MR
[4] Goldstein M. S., “Theorems of Almost Everywhere Convergence in von Neumann Algebras”, J. Oper. Theory, 6 (1981), 233–311 (in Russian) | MR
[5] Goldstein M. S., Grabarnik G. Y., “Almost Sure Convergence Theorems in von Neumann Algebras”, Israel J. Math., 76:1–2 (1991), 161–182 | DOI | MR | Zbl
[6] Grabarnik G. Y., Katz A. A., “Ergodic Type Theorems for Finite von Neumann Algebras”, Israel J. Math., 90:1–3 (1995), 403–422 | DOI | MR | Zbl
[7] Grabarnik G. Y., Katz A. A., “On Neveu Decomposition and Ergodic Type Theorems for Semi-Finite von Neumann Algebras”, Vladikavkaz Mathematical Journal, 5:2 (2003), 5–9 | MR | Zbl
[8] Grabarnik G. Y., Katz A. A., On Multiparametric Superadditive Stochastic Ergodic Theorem for Semi-finite von Neumann Algebras, In preparation
[9] Jajte R., Strong limit theorems in noncommutative probability, Lecture Notes in Mathematics, 1110, Springer-Verlag, Berlin, 1985, 152 pp. | MR | Zbl
[10] Katz A. A., Ergodic Type Theorem in von Neumann Algebras, Ph. D. Thesis, University of South Africa, Pretoria, 2001, 83 pp.
[11] Katz A. A., “One Property of the Weak Convergence of Operators Iterations in von Neumann Algebras”, Vladikavkaz Mathematical Journal, 5:2 (2003), 34–35 | MR | Zbl
[12] Katz A. A., Operators Iterations in non-commutative $L_{p}$-spaces, In preparation
[13] Krengel U., Ergodic Theorems, de Gruyter Studies in Mathematics, 6, Walter de Gruyter Co., Berlin, 1985, 357 pp. | MR | Zbl
[14] Lance E. C., “Ergodic theorems for convex sets and operator algebras”, Invent. Math., 37:3 (1976), 201–214 | DOI | MR | Zbl
[15] Pedersen G. K., $C^*$-algebras and their automorphism groups, London Mathematical Society Monographs, 14, Academic Press, Inc., London–New York; Harcourt Brace Jovanovich Publishers, 1979, 416 pp. | MR | Zbl
[16] Petz D., “Ergodic theorems in von Neumann algebras”, Acta Sci. Math. (Szeged), 46:1–4 (1983), 329–343 | MR | Zbl
[17] Sakai S., $C^*$-algebras and $W^*$-algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, 60, Springer-Verlag, New York–Heidelberg, 1971, 253 pp. | MR | Zbl
[18] Sinai Ja. G., Anshelevich V. V., “Some questions on noncommutative ergodic theory”, Uspehi Mat. Nauk, 31:4 (190) (1976), 151–167 (in Russian) | MR | Zbl
[19] Takesaki M., Theory of Operator Algebras, v. I, Springer-Verlag, Heidelberg, 1979, 415 pp. | MR