Subgroups that contain a torus, which are associated with the quotient field of a unique factorization ring
Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 3, pp. 31-39
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{VMJ_2003_5_3_a3,
author = {N. A. Dzhusoeva and V. A. Koǐbaev},
title = {Subgroups that contain a torus, which are associated with the quotient field of a unique factorization ring},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {31--39},
year = {2003},
volume = {5},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2003_5_3_a3/}
}
TY - JOUR AU - N. A. Dzhusoeva AU - V. A. Koǐbaev TI - Subgroups that contain a torus, which are associated with the quotient field of a unique factorization ring JO - Vladikavkazskij matematičeskij žurnal PY - 2003 SP - 31 EP - 39 VL - 5 IS - 3 UR - http://geodesic.mathdoc.fr/item/VMJ_2003_5_3_a3/ LA - ru ID - VMJ_2003_5_3_a3 ER -
%0 Journal Article %A N. A. Dzhusoeva %A V. A. Koǐbaev %T Subgroups that contain a torus, which are associated with the quotient field of a unique factorization ring %J Vladikavkazskij matematičeskij žurnal %D 2003 %P 31-39 %V 5 %N 3 %U http://geodesic.mathdoc.fr/item/VMJ_2003_5_3_a3/ %G ru %F VMJ_2003_5_3_a3
N. A. Dzhusoeva; V. A. Koǐbaev. Subgroups that contain a torus, which are associated with the quotient field of a unique factorization ring. Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 3, pp. 31-39. http://geodesic.mathdoc.fr/item/VMJ_2003_5_3_a3/
[1] Borevich Z. I., “O podgruppakh lineinykh grupp, bogatykh transvektsiyami”, Zap. nauch. seminarov LOMI, 75, 1978, 22–31 | MR | Zbl
[2] Borevich Z. I., Koibaev V. A., Chan Ngok Khoi, “Reshetki podgrupp v $GL(n,Q)$, soderzhaschikh nerasschepimyi tor”, Zap. nauch. seminarov POMI RAN, 191, 1991, 24–43 | Zbl
[3] Koibaev V. A., “Podgruppy gruppy $GL(n,Q)$, soderzhaschie nerasschepimyi maksimalnyi tor”, Dokl. AN SSSR, 312:1 (1990), 36–38 | MR
[4] Seitz G. M., “Subgroups of finite groups of Lie type”, J. Algebra, 61 (1979), 16–27 | DOI | MR | Zbl