One property of the weak covergence of operators iterations in von Neumann algebras
Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 2, pp. 34-35

Voir la notice de l'article provenant de la source Math-Net.Ru

Conditions are given for *-weak convergence of iterations for an ultraweak continuous fuctional in von Neumann algebra to imply norm convergence.
@article{VMJ_2003_5_2_a5,
     author = {A. A. Katz},
     title = {One property of the weak covergence of operators iterations in von {Neumann} algebras},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {34--35},
     publisher = {mathdoc},
     volume = {5},
     number = {2},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a5/}
}
TY  - JOUR
AU  - A. A. Katz
TI  - One property of the weak covergence of operators iterations in von Neumann algebras
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2003
SP  - 34
EP  - 35
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a5/
LA  - en
ID  - VMJ_2003_5_2_a5
ER  - 
%0 Journal Article
%A A. A. Katz
%T One property of the weak covergence of operators iterations in von Neumann algebras
%J Vladikavkazskij matematičeskij žurnal
%D 2003
%P 34-35
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a5/
%G en
%F VMJ_2003_5_2_a5
A. A. Katz. One property of the weak covergence of operators iterations in von Neumann algebras. Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 2, pp. 34-35. http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a5/