One property of the weak covergence of operators iterations in von Neumann algebras
Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 2, pp. 34-35
Cet article a éte moissonné depuis la source Math-Net.Ru
Conditions are given for *-weak convergence of iterations for an ultraweak continuous fuctional in von Neumann algebra to imply norm convergence.
@article{VMJ_2003_5_2_a5,
author = {A. A. Katz},
title = {One property of the weak covergence of operators iterations in von {Neumann} algebras},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {34--35},
year = {2003},
volume = {5},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a5/}
}
A. A. Katz. One property of the weak covergence of operators iterations in von Neumann algebras. Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 2, pp. 34-35. http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a5/
[1] Bratteli O., Robinson D., Operator Algebras and Quantum Statistical Mechanics, Springer-Verlag, New York–Heidelberg–Berlin, 1979, 500 pp. | MR | Zbl
[2] Katz A. A., Ergodic Type Theorem in von Neumann Algebras, Ph. D. Thesis, University of South Africa, Pretoria, 2001, 84 pp.
[3] Pedersen G. K., $C^*$-algebras and their automorphism groups, Academic Press, London–New York–San Fransisco, 1979, 416 pp. | MR | Zbl
[4] Sakai S., $C^*$-algebras and $W^*$-algebras, Springer-Verlag, Berlin, 1971, 256 pp. | MR | Zbl
[5] Takesaki M., Theory of Operator Algebras, v. I, Springer-Verlag, Berlin, 1979, vii+415 pp. | MR