On Neveu decomposition and ergodic type theorems for semi-finite von Neumann algebras
Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 2, pp. 5-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some ergodic type theorems for automorphisms of semi-finite von Neumann algebras are considered. Neveu decomposition is employed in order to prove stochastical convergence. This work is a generalization of authors results from [5] to the case of semi-finite von Neumann algebras.
@article{VMJ_2003_5_2_a1,
     author = {G. Ya. Grabarnik and A. A. Katz},
     title = {On {Neveu} decomposition and ergodic type theorems for semi-finite von {Neumann} algebras},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--9},
     year = {2003},
     volume = {5},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a1/}
}
TY  - JOUR
AU  - G. Ya. Grabarnik
AU  - A. A. Katz
TI  - On Neveu decomposition and ergodic type theorems for semi-finite von Neumann algebras
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2003
SP  - 5
EP  - 9
VL  - 5
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a1/
LA  - en
ID  - VMJ_2003_5_2_a1
ER  - 
%0 Journal Article
%A G. Ya. Grabarnik
%A A. A. Katz
%T On Neveu decomposition and ergodic type theorems for semi-finite von Neumann algebras
%J Vladikavkazskij matematičeskij žurnal
%D 2003
%P 5-9
%V 5
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a1/
%G en
%F VMJ_2003_5_2_a1
G. Ya. Grabarnik; A. A. Katz. On Neveu decomposition and ergodic type theorems for semi-finite von Neumann algebras. Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 2, pp. 5-9. http://geodesic.mathdoc.fr/item/VMJ_2003_5_2_a1/

[1] Akcoglu M., Sucheston L., “A stochastic ergodic theorem for superadditive precesses”, Ergodic Theory and Dynamical Systems, 3 (1983), 335–344 | DOI | MR | Zbl

[2] Cunze J. P., Dang-Nqoc N., “Ergodic theorems for non-commutative dynamical systems”, Inventiones Mathematicae, 46 (1978), 1–15 | DOI | MR

[3] Goldstein M. S., Grabarnik G. Ya., “Almost sure convergence theorems in von Neumann algebras”, Israel J. Math., 76 (1991), 161–182 | DOI | MR | Zbl

[4] Dixmier J., Les alg'‘ebres d’operateurs dans l'espace hilbertien (algèbres de von Neumann), Gauthier-Villar, Paris, 1969, 367 pp. | MR | Zbl

[5] Grabarnik G. Ya., Katz A. A., “Ergodic type theorems for finite von Neumann algebras”, Israel J. Math., 90 (1995), 403–422 | DOI | MR | Zbl

[6] Grabarnik G. Ya., Katz A. A., On multiparametric superadditive stochastic ergodic theorem for semi-finite von Neumann algebras (to appear)

[7] Jajte R., Strong limit theorem in non-commutative probability, Lecture Notes in Math., 1110, Spring-Verlag, Berlin, 1985, 162 pp. | MR | Zbl

[8] Jajte R., “On the existence of invariant states in $W^*$-algebras”, Bull. Polish Acad. Sci., 34 (1986), 617–624 | MR

[9] Hajian A., Kakutani S., “Weakly wandering sets and invariant measures”, Trans. Amer. Math. Soc., 110 (1964), 131–151 | MR

[10] Katz A. A., Ergodic type theorems in von Neumann algebras, Ph. D. Thesis, University of South Africa, Pretoria, 2001, 84 pp.

[11] Kingman J. F. C., “Subadditive ergodic theory”, Annals of Probability, 1 (1973), 883–909 | DOI | MR | Zbl

[12] Kovacs I., Szücs J., “Ergodic type theorem in von Neumann algebras”, Acta Scientiarum Mathematicarum (Szeged), 27 (1966), 233–246 | MR | Zbl

[13] Krengel U., Ergodic Theorems, De Greuter, Berlin, 1985 | MR

[14] Lance E. C., “Ergodic theorems for convex sets and operator algebras”, Inventiones Mathematicae, 37 (1976), 201–214 | DOI | MR | Zbl

[15] Petz D., “Ergodic theorems in von Neumann algebras”, Acta Scientiarum Mathematicarum (Szeged), 46 (1983), 329–343 | MR | Zbl

[16] Segal I. E., “A non-commutative extension of abstract integration”, Archiv der Math., 57 (1953), 401–457 | MR | Zbl

[17] Sinai Ya. G., Anshelevich V. V., “Nekotorye problemy nekommutativnoi ergodicheskoi teorii”, Uspekhi mat. nauk, 31:4 (1976), 151–167 | MR | Zbl

[18] Takesaki M., Theory of Operator Algebras, v. I, Springer-Verlag, Berlin, 1979, vii+415 pp. | MR

[19] Yeadon F. J., “Convergence of measurable operators”, Math. Proc. Cambridge Philos. Soc., 74 (1973), 257–269 | DOI | MR

[20] Yeadon F. J., “Ergodic theorems for semi-finite von Neumann algebras, I”, J. London Math. Soc., 16 (1977), 326–332 | DOI | MR | Zbl

[21] Yeadon F. J., “Ergodic theorems for semi-finite von Neumann algebras, II”, Math. Proc. Cambridge Philos. Soc., 88 (1980), 135–147 | DOI | MR | Zbl