@article{VMJ_2003_5_1_a2,
author = {M. S. Alborova},
title = {Approximation in $L_p$ by solutions of quasi-elliptic equations},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {10--13},
year = {2003},
volume = {5},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2003_5_1_a2/}
}
M. S. Alborova. Approximation in $L_p$ by solutions of quasi-elliptic equations. Vladikavkazskij matematičeskij žurnal, Tome 5 (2003) no. 1, pp. 10-13. http://geodesic.mathdoc.fr/item/VMJ_2003_5_1_a2/
[1] Mergelyan S. N., “On the comple teness of systems of anlytic functions”, Amer. Math. Soc. Trans., 19:2 (1962), 109–166 | MR
[2] Keldysh M. V., “On the solubility and the stability of Dirichlet's problem”, Amer. Math. Soc. Trans., 51:2 (1966)
[3] Hedberg L. I., “Approximation the mean by the analytic functions”, Trans. Amer. Math. Soc., 163 (1972), 157–171 | MR | Zbl
[4] Polking J. C., “Approximation in $L^p$ by solutions of elliptie partal differential equations”, Amer. J. Math., 94:4 (1972), 1231–1244 | DOI | MR | Zbl
[5] Browder F. E., “Approximation by solutions of partial differential equations”, Amer. J. of Math., 84 (1962), 134–160 | DOI | MR | Zbl
[6] Alborova M. S., “Teorema o plotnosti”, Vladikavk. mat. zhurn., 3:3 (2001), 3–7 | MR | Zbl