@article{VMJ_2002_4_3_a5,
author = {S. S. Kutateladze},
title = {One functional-analytical idea by {Alexandrov} in convex geometry},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {50--55},
year = {2002},
volume = {4},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_2002_4_3_a5/}
}
S. S. Kutateladze. One functional-analytical idea by Alexandrov in convex geometry. Vladikavkazskij matematičeskij žurnal, Tome 4 (2002) no. 3, pp. 50-55. http://geodesic.mathdoc.fr/item/VMJ_2002_4_3_a5/
[1] Alexandrov A. D., Selected Works, v. 1, Selected Scientific Papers, Gordon and Breach, London etc., 1996, 322 pp. | MR | Zbl
[2] Foisy J., Alfaro M., Brock J., Hodges N., Zimba J., “The standard double soap bubble in $\mathbb R^2$ uniquely minimizes perimeter”, Pacific J. Math., 159:1 (1993), 47–59 | MR | Zbl
[3] Pogorelov A. V., “Imbedding a ‘soap bubble’ into a tetrahedron”, Math. Notes, 56:2 (1994), 824–826 | DOI | MR | Zbl
[4] Hutchings M., Morgan F., Ritoré M., Ros A., “Proof of the double bubble conjecture”, Electron. Res. Announc. Amer. Math. Soc., 6:6 (2000), 45–49 | DOI | MR | Zbl
[5] Urysohn P. S., “Dependence between the average width and volume of convex bodies”, Mat. Sb., 31:3 (1924), 477–486 (in Russian)
[6] Kutateladze S. S., “Parametrization of isoperimetric-type problems in convex geometry”, Siberian Adv. Math., 9:3 (1999), 115–131 | MR | Zbl
[7] Kutateladze S. S., “On the isoperimetric type problems with current hyperplanes”, Sibirsk. Mat. Zh., 43:4 (2002), 811–815 (to appear) (in Russian) | MR | Zbl