On the convergence of a difference scheme for a parabolic-type equation with a nonlocal condition in cylindrical coordinates
Vladikavkazskij matematičeskij žurnal, Tome 4 (2002) no. 2, pp. 50-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2002_4_2_a7,
     author = {\`E. G. Olisaev and M. M. Lafisheva},
     title = {On the convergence of a difference scheme for a parabolic-type equation with a nonlocal condition in cylindrical coordinates},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {50--56},
     year = {2002},
     volume = {4},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2002_4_2_a7/}
}
TY  - JOUR
AU  - È. G. Olisaev
AU  - M. M. Lafisheva
TI  - On the convergence of a difference scheme for a parabolic-type equation with a nonlocal condition in cylindrical coordinates
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2002
SP  - 50
EP  - 56
VL  - 4
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2002_4_2_a7/
LA  - ru
ID  - VMJ_2002_4_2_a7
ER  - 
%0 Journal Article
%A È. G. Olisaev
%A M. M. Lafisheva
%T On the convergence of a difference scheme for a parabolic-type equation with a nonlocal condition in cylindrical coordinates
%J Vladikavkazskij matematičeskij žurnal
%D 2002
%P 50-56
%V 4
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2002_4_2_a7/
%G ru
%F VMJ_2002_4_2_a7
È. G. Olisaev; M. M. Lafisheva. On the convergence of a difference scheme for a parabolic-type equation with a nonlocal condition in cylindrical coordinates. Vladikavkazskij matematičeskij žurnal, Tome 4 (2002) no. 2, pp. 50-56. http://geodesic.mathdoc.fr/item/VMJ_2002_4_2_a7/

[1] Chudnovskii A. F., “Nekotorye korrektivy v postanovke i reshenii zadach teplo- i vlagoperenosa v pochve”, Sb. trudov AFI, 23, 1969, 41–54

[2] Samarskii A. A., Teoriya raznostnykh skhem, Nauka, M., 1977, 656 pp. | MR | Zbl

[3] Samarskii A. A., “Odnorodnye raznostnye skhemy na neravnomernykh setkakh dlya uravnenii parabolicheskogo tipa”, ZhVM i MF, 3:2 (1963), 266–298 | MR

[4] Andreev V. B., “O skhodimosti raznostnykh skhem, approksimiruyuschikh vtoruyu i tretyu kraevye zadachi dlya ellipticheskikh uravnenii”, ZhVM i MF, 8:6 (1968), 1218–1231 | Zbl