Superposition operators in Lebesgue spaces and the differentiability of quasi-additive set functions
Vladikavkazskij matematičeskij žurnal, Tome 4 (2002) no. 1, pp. 11-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2002_4_1_a1,
     author = {S. K. Vodop'yanov and A. D.-O. Ukhlov},
     title = {Superposition operators in {Lebesgue} spaces and the differentiability of quasi-additive set functions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {11--33},
     year = {2002},
     volume = {4},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2002_4_1_a1/}
}
TY  - JOUR
AU  - S. K. Vodop'yanov
AU  - A. D.-O. Ukhlov
TI  - Superposition operators in Lebesgue spaces and the differentiability of quasi-additive set functions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2002
SP  - 11
EP  - 33
VL  - 4
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2002_4_1_a1/
LA  - ru
ID  - VMJ_2002_4_1_a1
ER  - 
%0 Journal Article
%A S. K. Vodop'yanov
%A A. D.-O. Ukhlov
%T Superposition operators in Lebesgue spaces and the differentiability of quasi-additive set functions
%J Vladikavkazskij matematičeskij žurnal
%D 2002
%P 11-33
%V 4
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2002_4_1_a1/
%G ru
%F VMJ_2002_4_1_a1
S. K. Vodop'yanov; A. D.-O. Ukhlov. Superposition operators in Lebesgue spaces and the differentiability of quasi-additive set functions. Vladikavkazskij matematičeskij žurnal, Tome 4 (2002) no. 1, pp. 11-33. http://geodesic.mathdoc.fr/item/VMJ_2002_4_1_a1/

[1] Ukhlov A. D., “Otobrazheniya, porozhdayuschie vlozheniya prostranstv Soboleva”, Sib. mat. zhurn., 34:1 (1993), 185–192 | MR | Zbl

[2] Vodopyanov S. K., Ukhlov A. D., “Prostranstva Soboleva i $(P,Q)$-kvazikonformnye otobrazheniya grupp Karno”, Sib. mat. zhurn., 39:4 (1998), 776–795 | MR

[3] Rado T., Reichelderfer P. V., Continuous transformations in analysis, Springer-Verlag, Berlin, 1955 | MR

[4] Stein E. M., Harmonic Analysis: Real-Variables Methods, Orthogonality, and Oscillatory Integrals, Princeton Univ. Press, Princeton, 1993 | MR | Zbl

[5] Pansu P., “Métriques de Carnot — Carathéodory et quasiisométries des espacies symétriques de rang un”, Ann. of Math., 129:2 (1989), 1–60 | DOI | MR | Zbl

[6] Naimark M. A., Normirovannye koltsa, Nauka, M., 1968 | MR

[7] Federer G., Geometricheskaya teoriya mery, Nauka, M., 1987 | MR | Zbl

[8] Martio O., Rickman S., Väisälä J., “Definitions for quasiregular mappings”, Ann. Acad. Scien. Fen. Series A I. Math., 1969, no. 448, 1–40 | MR

[9] Gusman M., Differentsirovanie integralov v $\mathbb{R}^n$, Mir, M., 1978, 200 pp. | MR

[10] Khalmosh P., Teoriya mery, IL, M., 1953

[11] Romanov A. S., “Strukturnye operatory v prostranstvakh $L_p$”, Sib. mat. zhurn., 21:1 (1980), 220–223 | MR | Zbl

[12] Vodopyanov S. K., Ukhlov A. D., “Approksimativno differentsiruemye preobrazovaniya i zamena peremennykh na nilpotentnykh gruppakh”, Sib. mat. zhurn., 37:1 (1996), 70–89 | MR

[13] Vodop'yanov S. K., “$\mathcal P$-Differentiability on Carnot Groups in Different Topologies and Related Topics”, Trudy po analizu i geometrii, ed. S. K. Vodopyanov, Izd-vo IM SO RAN, Novosibirsk, 2000, 603–670 | MR