@article{VMJ_2001_3_3_a0,
author = {M. S. Alborova},
title = {A density theorem},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {3--7},
year = {2001},
volume = {3},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2001_3_3_a0/}
}
M. S. Alborova. A density theorem. Vladikavkazskij matematičeskij žurnal, Tome 3 (2001) no. 3, pp. 3-7. http://geodesic.mathdoc.fr/item/VMJ_2001_3_3_a0/
[1] Sobolev S. L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Izd-vo LGU, L., 1950, 225 pp.
[2] Mazya V. G., Prostranstva Soboleva, Izd-vo LGU, L., 1985, 416 pp. | MR
[3] Lions Zh.-L., Madzhenes E., Neodnorodnye granichnye zadachi i ikh prilozheniya, Mir, M., 1971, 371 pp. | Zbl
[4] Polking J. C., “Approximation in $L^p$ by solution of eliptic partial differential equations”, Amer. J. Math., 94 (1972), 1231–1244 | DOI | MR | Zbl
[5] Hedberg L. I., “Approximation in the mean by solution of eliptic equations”, Duke Math., 40:1 (1973), 9–16 | DOI | MR | Zbl
[6] Besov O. V., Ilin V. P., Nikolskii S. M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1975, 408 pp. | MR | Zbl
[7] Uspenskii S. V., Demidenko G. V., Perepelkin V. G., Teoremy vlozheniya i prilozheniya k differentsialnym uravneniyam, Nauka, Novosibirsk, 1978
[8] Alborova M. S., Vodopyanov S. K., Ustranimye osobennosti dlya ogranichennykh reshenii kvaziellipticheskikh uravnenii, Dep. v VINITI, B87–804, 1987
[9] Alborova M. S., Nekotorye integralnye neravenstva i teoremy vlozheniya dlya anizotropnykh funktsionalnykh prostranstv, Dep. v VINITI, 3258-V-00, 2000
[10] Reshetnyak Yu. G., “O ponyatii emkosti v teorii funktsii s obobschennymi proizvodnymi”, Sib. mat. zhurn., 10:5 (1969), 1109–1139