@article{VMJ_2001_3_1_a3,
author = {V. G. Fetisov and N. P. Bezuglova},
title = {Locally bounded spaces of vector functions, and the nonlinear operators in them},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {42--49},
year = {2001},
volume = {3},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2001_3_1_a3/}
}
TY - JOUR AU - V. G. Fetisov AU - N. P. Bezuglova TI - Locally bounded spaces of vector functions, and the nonlinear operators in them JO - Vladikavkazskij matematičeskij žurnal PY - 2001 SP - 42 EP - 49 VL - 3 IS - 1 UR - http://geodesic.mathdoc.fr/item/VMJ_2001_3_1_a3/ LA - ru ID - VMJ_2001_3_1_a3 ER -
V. G. Fetisov; N. P. Bezuglova. Locally bounded spaces of vector functions, and the nonlinear operators in them. Vladikavkazskij matematičeskij žurnal, Tome 3 (2001) no. 1, pp. 42-49. http://geodesic.mathdoc.fr/item/VMJ_2001_3_1_a3/
[1] Korotkov V. B., Integralnye operatory, Nauka, Novosibirsk, 1983, 224 pp. | MR
[2] Kalton N. J., “Isomorphism between $L^p$-function spaces when $p1$”, J. Func. Anal., 42 (1981), 299–337 | DOI | MR
[3] Fetisov V. G., Ob operatorakh v idealnykh kvazinormirovannykh prostranstvakh so smeshannoi kvazinormoi $E(\Omega)$, Deponir. v VINITI 22.05.90, No 2784–V90, Severo-Osetin. gosuniversitet
[4] Rolewicz S., Metric linear spaces, PWN, Warszawa, 1972 | MR | Zbl
[5] Schwartz L., “Un theoreme de la convergence dans les $L^p$, $0\leq p \leq\infty$”, C. R. Acad. Sci. Paris. Ser. A, 268 (1969), 704–706 | MR | Zbl
[6] Matuszewska W., Orlicz W., “A note on modular spaces, IX”, Bull. Acad. Polon. Sci., 16 (1968), 801–807 | MR
[7] Fetisov V. G., O svoistvakh nelineinykh $\lambda$-invariantnykh operatorov v lokalno ogranichennykh prostranstvakh, v. 24, Groznenskii gosuniversitet, Groznyi, 1992
[8] Bukhvalov A. V., Korotkov V. B., Kusraev A. G., Kutateladze S. S., Makarov B. M., Vektornye reshetki i integralnye operatory, Nauka, Novosibirsk, 1992, 214 pp.
[9] Bukhvalov A. V., “O prostranstvakh so smeshannoi normoi”, Vestnik LGU, 1973, no. 19, 5–12 | Zbl
[10] Fetisov V. G., Operatory i uravneniya v $F$-kvazinormirovannykh prostranstvakh, Diss. na soiskanie uch. step. dokt. fiz.-mat. nauk, In-t mat-ki SO RAN, 1996, 280 pp.