@article{VMJ_2000_2_4_a2,
author = {A. G. Kusraev},
title = {Modular measures and {Maharam} operators},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {17--29},
year = {2000},
volume = {2},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2000_2_4_a2/}
}
A. G. Kusraev. Modular measures and Maharam operators. Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 4, pp. 17-29. http://geodesic.mathdoc.fr/item/VMJ_2000_2_4_a2/
[1] Akilov G. P., Kutateladze S. S., Uporyadochennye vektornye prostranstva, Nauka, Novosibirsk, 1978, 368 pp. | MR | Zbl
[2] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, GIFML, M., 1961, 407 pp. | MR
[3] Kantorovich L. V., Vulikh B. Z., Pinsker A. G., Funktsionalnyi analiz v poluuporyadochennykh prostranstvakh, Gostekhizdat, M.–L., 1950, 548 pp. | Zbl
[4] Kusraev A. G., “Obschie formuly dezintegrirovaniya”, Dokl. AN SSSR, 265:6 (1982), 1312–1316 | MR | Zbl
[5] Kusraev A. G., Vektornaya dvoistvennost i ee prilozheniya, Nauka, Novosibirsk, 1985, 256 pp. | MR | Zbl
[6] Kusraev A. G., “Lineinye operatory v reshetochno normirovannykh prostranstvakh”, Issledovaniya po geometrii «v tselom» i matematicheskomu analizu, Nauka, Novosibirsk, 1987, 84–123 | MR
[7] Kusraev A. G., “Mazhoriruemye operatory”, Lineinye operatory, soglasovannye s poryadkom, Izd-vo In-ta mat-ki SO RAN, Novosibirsk, 1995, 212–292 | MR
[8] Kluwer Academic Publishers, Dordrecht, 1996 | Zbl
[9] Kusraev A. G., Kutateladze S. S., Subdifferentsialy. Teoriya i prilozheniya, Nauka, Novosibirsk, 1992, 270 pp. ; Kluwer Academic Publishers, Dordrecht, 1995 | MR | Zbl | Zbl
[10] Kusraev A. G., Malyugin S. A., “O poryadkovo nepreryvnoi sostavlyayuschei mazhoriruemogo operatora”, Sib. mat. zhurn., 28:4 (1987), 127–139 | MR | Zbl
[11] Kusraev A. G., Malyugin S. A., Nekotorye voprosy teorii vektornykh mer, Izd-vo In-ta mat-ki SO AN SSSR, Novosibirsk, 1988, 182 pp. | MR
[12] Kaplansky I., “Modules over operator algebras”, Amer. J. Math., 75:4 (1953), 839–858 | DOI | MR | Zbl
[13] Luxemburg W. A. J., Schep A., “A Radon–Nikodým type theorem for positive operators and a dual”, Indag. Math. (N.S.), 40 (1978), 357–375 | MR
[14] Maharam D., “The representation of abstract measure functions”, Trans. Amer. Math. Soc., 65:2 (1949), 279–330 | MR | Zbl
[15] Maharam D., “Decompositions of measure algebras and spaces”, Trans. Amer. Math. Soc., 69:1 (1950), 142–160 | DOI | MR | Zbl
[16] Maharam D., “The representation of abstract integrals”, Trans. Amer. Math. Soc., 75:1 (1953), 154–184 | MR | Zbl
[17] Maharam D., “On kernel representation of linear operators”, Trans. Amer. Math. Soc., 79:1 (1955), 229–255 | MR | Zbl
[18] Maharam D., “On positive operators”, Contemp. Math., 26, 1984, 263–277 | MR | Zbl
[19] Wickstead A. W., “Stone algebra valued measures: integration of vector-valued functions and Radon–Nikodým type theorems”, Proc. London Math. Soc., 45:2 (1982), 193–226 | DOI | MR | Zbl
[20] Wright J. D. M., “A Radon–Nikodým theorem for Stone algebra valued measures”, Trans. Amer. Math. Soc., 139 (1969), 75–94 | MR | Zbl
[21] Wright J. D. M., “Stone algebra valued measures and integrals”, Proc. London Math. Soc., 19:3 (1969), 107–122 | DOI | MR | Zbl
[22] Wright J. D. M., “The measure extension problem for vector lattices”, Ann. Inst. Fourier (Grenoble), 21 (1971), 65–68 | MR
[23] Wright J. D. M., “Vector lattice measure on locally compact spaces”, Math. Z., 120 (1971), 193–203 | DOI | MR | Zbl