@article{VMJ_2000_2_3_a1,
author = {F. Kh. Doev},
title = {Estimates in the laws of large numbers for regular summation methods},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {13--27},
year = {2000},
volume = {2},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_2000_2_3_a1/}
}
F. Kh. Doev. Estimates in the laws of large numbers for regular summation methods. Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 3, pp. 13-27. http://geodesic.mathdoc.fr/item/VMJ_2000_2_3_a1/
[1] Bikyalis A. T., “Asimptoticheskie razlozheniya dlya summ nezavisimykh $m$-reshetchatykh sluchainykh vektorov”, Lit. mat. sb., 12 (1972), 118–189
[2] Gafurov M. U., “Primenenie analoga neravenstv Nagaeva S. V. i Fuka D. Kh. dlya vzveshennykh summ nezavisimykh sluchainykh velichin po zakonu bolshikh chisel”, Banach center publication, 5, Warszawa, 1979, 260–271
[3] Gradshtein I. S., Ryzhik I. M., Tablitsy integralov, summ, ryadov i proizvedenii, 4-e izd., Fizmatgiz, M., 1963, 1514 pp. | MR
[4] Sirazhdinov S. Kh., Gafurov M. U., Metod ryadov v granichnykh zadachakh dlya sluchainykh bluzhdanii, FAN, Tashkent, 1987, 140 pp. | MR
[5] Baum L. E., Katz M., “Convergence rates in the law of large numbers”, Trans. Amer. Math. Soc., 120:1 (1965), 108–123 | DOI | MR | Zbl
[6] Heyde C. C., “A supplement to the strong law of large numbers”, J. Appl. Probab., 12:1 (1975), 173–175 | DOI | MR | Zbl
[7] Sztencel R., “On Boundednes and convergence of some Banach space valued random series”, Probab. Math. Statist., 2:1 (1981), 83–88 | MR | Zbl