Exceptional sets for solutions of quasilinear equations of parabolic type in weighted Sobolev spaces
Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 3, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_2000_2_3_a0,
     author = {M. S. Alborova},
     title = {Exceptional sets for solutions of quasilinear equations of parabolic type in weighted {Sobolev} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--12},
     year = {2000},
     volume = {2},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2000_2_3_a0/}
}
TY  - JOUR
AU  - M. S. Alborova
TI  - Exceptional sets for solutions of quasilinear equations of parabolic type in weighted Sobolev spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2000
SP  - 3
EP  - 12
VL  - 2
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_2000_2_3_a0/
LA  - ru
ID  - VMJ_2000_2_3_a0
ER  - 
%0 Journal Article
%A M. S. Alborova
%T Exceptional sets for solutions of quasilinear equations of parabolic type in weighted Sobolev spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2000
%P 3-12
%V 2
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_2000_2_3_a0/
%G ru
%F VMJ_2000_2_3_a0
M. S. Alborova. Exceptional sets for solutions of quasilinear equations of parabolic type in weighted Sobolev spaces. Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 3, pp. 3-12. http://geodesic.mathdoc.fr/item/VMJ_2000_2_3_a0/

[1] Aronson D. G., “Removable singularities for linear parabolic equations”, Arch. Rational Mech. Anal., 17 (1964), 79–84 | DOI | MR | Zbl

[2] Edmunds D. E., Peletier L. A., “Removable singulirities of solutions to quasilinear parabolic equations”, J. London Math. Soc., 2:2 (1970), 273–283 | DOI | MR | Zbl

[3] Gariepy R., Ziemer W. P., “Removable sets for parabolic equations”, J. London Math. Soc., 21:2 (1981), 311–318 | DOI | MR

[4] Saraiva L. M. R., “Removable singularities and quasilinear parabolic equations”, Proc. London Math. Soc., 48:3 (1984), 385–400 | DOI | MR | Zbl

[5] Kraizer V., Myuller B., “Ustranimye mnozhestva dlya uravneniya teploprovodnosti”, Vest. MGU, 1973, no. 3, 26–32

[6] Ziemer W. P., “Regularity at the boundary and removable singularities for solutions of quasilinear parabolic equations”, Proc. Center for Math. Anal. Australia Nat. Univ., 1 (1982), 17–25 | MR | Zbl

[7] Vodopyanov S. K., “Razryazhennye mnozhestva v vesovoi teorii potentsiala i vyrozhdayuschiesya ellipticheskie uravneniya”, Sib. mat. zhurn., 36:1 (1995), 28–36 | MR

[8] Vodopyanov S. K., “Vesovye prostranstva Soboleva i granichnoe povedenie reshenii vyrozhdayuschikhsya gipoellipticheskikh uravnenii”, Sib. mat. zhurn., 36:2 (1995), 278–300 | MR

[9] Vodopyanov S. K., “Vesovaya $L_p$-teoriya potentsiala na odnorodnykh gruppakh”, Sib. mat. zhurn., 33:2 (1992), 29–48 | MR

[10] Vodopyanov S. K., Markina I. G., “Isklyuchitelnye mnozhestva dlya reshenii subellipticheskikh uravnenii”, Sib. mat. zhurn., 36:4 (1995), 805–818 | MR

[11] Vodopyanov S. K., Chernikov V. M., “Prostranstva Soboleva i gipoellipticheskie uravneniya”, Lineinye operatory, soglasovannye s poryadkom, Izd-vo In-ta mat-ki SO RAN, Novosibirsk, 1995, 3–64 | MR

[12] Lu G., “Weigthed Poincare and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications”, Revista Matematica Iberoamericana, 8:4 (1992), 367–439 | MR | Zbl

[13] Fabes E. B., Kenig C. E., Serapioni R. R., “The local regularity of solutions of degenerate elliptic equations”, Comm. in P. D. E., 7:1 (1982), 77–116 | DOI | MR | Zbl

[14] Jerison D., “The Poincare inequality for vector fields satisfying Hörmander's condition”, Duke Math. J., 53:2 (1986), 503–523 | DOI | MR | Zbl

[15] Serrin J., Introduction to differentiation theory, University of Minnesota, 1965