Unsolved nonstandard problems
Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 2, pp. 26-45 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the fall of 1990 a small colloquium on nonstandard analysis was arranged at the request of a group of graduate and postgraduate students of Novosibirsk State University. At the meetings many unsolved problems were formulated stemming from various branches of analysis and seemingly deserving attention of the novices of nonstandard analysis. In 1994 some discussion took place on combining nonstandard methods at the international conference «Interaction Between Functional Analysis, Harmonic Analysis and Probability» (Missouri University, Columbia USA). The same topics were submitted to the international conference «Analysis and Logic» held in Belgium in 1997. In 1998 an INTAS research project was submitted. The problems raised in the framework of these projects are the core of this article. The list of the problems contains not only simple questions for drill but also topics for serious research intended mostly at the graduate and post graduate level. Some problems need creative thought to clarify and specify them.
@article{VMJ_2000_2_2_a3,
     author = {A. G. Kusraev and S. S. Kutateladze},
     title = {Unsolved nonstandard problems},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {26--45},
     year = {2000},
     volume = {2},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2000_2_2_a3/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - S. S. Kutateladze
TI  - Unsolved nonstandard problems
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2000
SP  - 26
EP  - 45
VL  - 2
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/VMJ_2000_2_2_a3/
LA  - en
ID  - VMJ_2000_2_2_a3
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A S. S. Kutateladze
%T Unsolved nonstandard problems
%J Vladikavkazskij matematičeskij žurnal
%D 2000
%P 26-45
%V 2
%N 2
%U http://geodesic.mathdoc.fr/item/VMJ_2000_2_2_a3/
%G en
%F VMJ_2000_2_2_a3
A. G. Kusraev; S. S. Kutateladze. Unsolved nonstandard problems. Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 2, pp. 26-45. http://geodesic.mathdoc.fr/item/VMJ_2000_2_2_a3/

[1] Albeverio S., Fenstad J. E., Höegh-Krohn R., Lindström T., Nonstandard Methods in Stochastic Analysis and Mathematical Physics, Academic Press, New York a.o., 1986 | MR | Zbl

[2] Albeverio S., Gordon E. I., Khrennikov A. Yu., “Finite dimensional approximations of operators in the Hilbert spaces of functions on locally compact abelian groups”, Acta Appl. Math., 64:1 (2000), 33–73 | DOI | MR | Zbl

[3] Arkeryd L., Bergh J., “Some properties of Loeb-Sobolev spaces”, J. London Math. Soc., 34:2 (1986), 317–334 | DOI | MR | Zbl

[4] Bishop E., Bridges D., Constructive Analysis, Springer, Berlin etc., 1985 | MR | Zbl

[5] Burden C. W., Mulvey C. J., “Banach spaces in categories of sheaves”, Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Springer, Berlin, 1979 | MR

[6] Castaing C., Valadier M., Convex Analysis and Measurable Multifunctions, Lectures Notes in Math., 580, Springer, Berlin etc., 1977, 278 pp. | MR | Zbl

[7] Cutland N. (ed.), Nonstandard Analysis and Its Applications, Cambridge Univ. Press, Cambridge, 1988 | MR | Zbl

[8] Dellacherie C., Capacities and Stochastic Processes, Russian translation, Mir, Moscow, 1972

[9] Diestel J., Geometry of Banach Spaces–Selected Topics, Springer, Berlin etc., 1975 | MR | Zbl

[10] Diestel J., Uhl J. J., Vector measures, Math. Surveys, 15, Amer. Math. Soc., Providence, RI, 1977 | MR | Zbl

[11] Ekeland I., Temam R., Convex Analysis and Variational Problems, North-Holland, Amsterdam, 1976 ; Mir, Moscow, 1979 | MR | Zbl | Zbl

[12] Emel'yanov È. Yu., “Invariant homomorphisms of nonstandard enlargements of Boolean algebras and vector lattices”, Sibirsk. Mat. Zh., 38:2 (1997), 286–296 | MR

[13] Fourman M. P., Mulvey C. J., Scott D. S. (eds.), Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Springer, Berlin, 1979 | MR | Zbl

[14] Fourman M. P., Scott D. S., “Sheaves and logic”, Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Springer, Berlin, 1979, 302–401 | MR

[15] Fourman M. P., “The logic of toposes”, Handbook of Mathematical Logic, North-Holland, Amsterdam, 1977 | MR

[16] Gol'dshteĭn V. M., Kuz'minov V. I., Shvedov I. A., “The Künneth formula for $L_p$-cohomologies of wrapped products”, Sibirsk. Mat. Zh., 32:5 (1991), 29–42 | MR

[17] Gol'dshteĭn V. M., Kuz'minov V. I., Shvedov I. A., “On approximation of exaxt and closed differential forms by compactly-supported forma”, Sibirsk. Mat. Zh., 33:2 (1992), 49–65 | MR

[18] Goldblatt R., Toposes. Categorical Analysis of Logic, North-Holland, Amsterdam etc., 1979, 488 pp. | MR | Zbl

[19] Gordon E. I., “Nonstandard finite-dimensional analogs of operators in $L_2(\mathbb{R}^n)$”, Sibirsk. Mat. Zh., 29:2 (1988), 45–59 | MR | Zbl

[20] Gordon E. I., “Relatively nonstandard elements in E. Nelson's internal set theory”, Sibirsk. Mat. Zh., 30:1 (1989), 89–95 | MR | Zbl

[21] Gordon E. I., “On Loeb measures”, Izv. Vyssh. Uchebn. Zaved. Mat., 1991, no. 2, 25–33 | MR | Zbl

[22] Gordon E. I., “Nonstandard analysis and compact abelian groups”, Sibirsk. Mat. Zh., 32:2 (1991), 26–40 | MR | Zbl

[23] Gordon E. I., “Nonstandard analysis and locally compact abelian groups”, Acta Applicandae Math., 25 (1991), 221–239 | MR | Zbl

[24] Gordon E. I., Nonstandard Methods in Commutative Harmonic Analysis, Amer. Math. Soc., Providence, RI, 1997 | MR

[25] Grayson R. J., “Heyting-valued models for intuitionistic set theory”, Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Springer, Berlin | MR

[26] Gutman A. E., Emel'yanov È. Yu., Kusraev A. G., Kutateladze S. S., Nonstandard Analysis and Vector Lattices, Sobolev Institute Press, Novosibirsk, 1999, 380 pp.

[27] Helgason S., The Radon Transformation, Birkhäuser, Boston a.o., 1980 ; Mir, Moscow, 1983 | MR | Zbl | Zbl

[28] Hofman K. H., Keimel K., “Sheaf theoretical concepts in analysis: bundles and sheaves of Banach spaces, Banach $C(X)$-modules”, Applications of Sheaves, Proc. Res. Sympos. Appl. Sheaf Theory to Logic, Algebra and Anal. (Univ. Durham, Durham, 1977), Springer, Berlin | MR

[29] Hogbe-Nlend H., Theorie des Bornologie et Applications, Springer, Berlin etc., 1971 | MR | Zbl

[30] Hurd A. E. (ed.), Nonstandard Analysis. Recent Development, Springer, Berlin, 1983 | MR | Zbl

[31] Ivanov V. V., “Oscillations of means in the ergodic theorem”, Dokl. RAS, 347:6 (1996), 736–738 | MR | Zbl

[32] Ivanov V. V., “Geometric properties of monotone functions and probabilities of random fluctuations”, Sibirsk. Mat. Zh., 37:1 (1996), 117–150 | MR | Zbl

[33] Johnstone P. T., Topos Theory, Academic Press, London etc., 1977 | MR | Zbl

[34] Kachurovskiĭ A. G., “Boundedness of mean fluctuations in the statistical ergodic theorem”, Optimizaton, 65:48 (1990), 71–77 | MR | Zbl

[35] Kachurovskiĭ A. G., “The rates of convergence in ergodic theorem”, Uspekhi Mat. Nauk, 51:4 (1996), 73–124 | MR | Zbl

[36] Kanovei V., Reeken M., “Internal approach to external sets and universes. I; II; III”, Studia Logica, 55 (1995), 227–235; 55 (1995), 347–376 ; 56 (1996), 293–322 | DOI | MR | Zbl | DOI | MR | Zbl

[37] Kanovei V., Reeken M., “Mathematics in a nonstandard world, I”, Math. Japonica, 45:2 (1997), 369–408 | MR | Zbl

[38] Kanoveĭ V. G., “On well-posedness of the Euler method of decomposition of sinus to infinite product”, Uspekhi Mat. Nauk, 43:4 (1988), 57–81 | MR

[39] Keldysh M. V., “On completeness of eigenfunctions of some classes of nonselfadjoint operators”, Uspekhi Mat. Nauk, 26:4 (1971), 15–41 | MR | Zbl

[40] Khurgin Ya. I., Yakovlev V. P., Finite Functions in Physics and Technology, Nauka, Moscow, 1971 (in Russian) | Zbl

[41] Kusraev A. G., Kutateladze S. S., Nonstandard Methods of Analysis, Nauka, Novosibirsk, 1990 ; Kluwer Academic Publishers, Dordrecht, 1994 | MR | Zbl

[42] Kusraev A. G., Kutateladze S. S., “On combination of nonstandard methods”, Sibirsk. Mat. Zh., 31:5 (1990), 111–119 | MR

[43] Kusraev A. G., Kutateladze S. S., Subdifferentials: Theory and Applications, Nauka, Novosibirsk, 1992 ; Kluwer Academic Publishers, Dordrecht, 1995 | MR | Zbl | Zbl

[44] Kusraev A. G., Kutateladze S. S., “The Kreĭn-Mil'man theorem and Kantorovich spaces”, Optimization, 68:51 (1992), 5–18 | MR | Zbl

[45] Kusraev A. G., Kutateladze S. S., “Nonstandard methods in geometric functional analysis”, Amer. Math. Soc. Transl., Ser. 2, 151 (1992), 91–105 | MR | Zbl

[46] Kusraev A. G., Kutateladze S. S., 55 Unsolved Problems of Nonstandard Analysis, Novosibirsk State Univ. Press, Novosibirsk, 1993, 16 pp. (in Russian)

[47] Kusraev A. G., Kutateladze S. S., “Nonstandard methods in functional analysis”, Interaction Between Functional Analysis, Harmonic Analysis, and Probability Theory, Marcel Dekker Inc., New York, 1995, 301–306 | MR

[48] Kusraev A. G., Kutateladze S. S., “On combined nonstandard methods in functional analysis”, Vladikavkaz Mat. Zh., 2:1 (2000), 3–9 | MR | Zbl

[49] Kusraev A. G., Kutateladze S. S., “On combined nonstandard methods in the theory of positive operators”, Matematychni Studii, 7:1 (1997), 33–40 | MR | Zbl

[50] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis, Nauka, Novosibirsk, 1999 | MR

[51] Kutateladze S. S., Fundamentals of Functional Analysis, Nauka, Novosibirsk, 1983; Kluwer Academic Publishers, Dordrecht, 1996

[52] Kutateladze S. S., “A variant of nonstandard convex programming”, Sibirsk. Mat. Zh., 27:4 (1986), 84–92 | MR | Zbl

[53] Levin B. Ya., Distributions of Roots of Entire Functions, Gostekhizdat, Moscow, 1956 (in Russian)

[54] Levin V. L., Convex Analysis in Spaces of Measurable Functions and Its Application in Mathematics and Economics, Nauka, Moscow, 1985 (in Russian) | MR

[55] Lindenstrauss J., Extension of Compact Operators, Memours AMS, 48, 1964, 112 pp. | MR | Zbl

[56] Luxemburg W. A. J., What is nonstandard analysis?, Amer. Math. Monthly, 80:6 (1973), 38–67 | DOI | MR | Zbl

[57] Mazon J. M., Segura de Leon S., “Order bounded orthogonally additive operators”, Rev. Roum. Math. Pures Appl., 35:4 (1990), 329–353 | MR | Zbl

[58] Maz'ya V. G., The Spaces of S. L. Sobolev, Leningrad University Publ. House, Leningrad, 1985 (in Russian) | MR | Zbl

[59] Maz'ya V. G., Khavin B. P., “A nonlinear potential theory”, Uspekhi Mat. Nauk, 27:6 (1972), 67–138 | MR

[60] Natterer F., The Mathematics of Computerized Tomography, Teubner, Stuttgart; Wily Sons, New York a.o., 1986 ; Mir, Moscow, 1990 | MR | Zbl | Zbl

[61] Péraire Y., “Une nouvelle théorie des infinitesimaux”, C. R. Acad. Aci. Paris Ser. I, 301:5 (1985), 157–159 | MR | Zbl

[62] Péraire Y., “A general theory of infinitesimals”, Sibirsk. Mat. Zh., 31:3 (1990), 107–124 | MR

[63] Péraire Y., “Théorie relative des ensembles internes”, Osaka J. Math., 29:2 (1992), 267–297 | MR | Zbl

[64] Pietsch A., Operator Ideals, VEB Deutschen Verlag der Wissenschaften, Berlin, 1978 ; Mir, Moscow, 1982 | MR | Zbl | Zbl

[65] Raebiger F., Wolff M. P. H., “Spectral and asymptotic properties of dominated operators”, J. Austral. Math. Soc. (Series A), 63 (1997), 16–31 | DOI | MR | Zbl

[66] Raebiger F., Wolff M. P. H., “On the approximation of positive operators and the behaviour of the spectra of the approximants”, Integral Equations Operator Theory, 28 (1997), 72–86 | DOI | MR | Zbl

[67] Rudin W., Functional Analysis, McGraw-Hill Book Co., New York, 1973 ; Mir, Moscow, 1975 | MR | Zbl

[68] Schaefer H. H., Banach Lattices and Positive Operators, Springer, Berlin etc., 1974, 376 pp. | MR | Zbl

[69] Schwarz H.-U., Banach Lattices and Operators, Teubner, Leipzig, 1984, 208 pp. | MR | Zbl

[70] Solovay R. M., “A model of set theory in which every set of reals is Lebesgue measurable”, Ann. of Math. (2), 92:2 (1970), 1–56 | DOI | MR | Zbl

[71] Solovay R., Tennenbaum S., “Iterated Cohen extensions and Souslin's problem”, Ann. Math., 94:2 (1972), 201–245 | DOI | MR

[72] Stern J., “The problem of envelopes for Banach spaces”, Israel J. Math., 24:1 (1976), 1–15 | DOI | MR | Zbl

[73] Stern J., “Some applications of model theory in Banach space theory”, Ann. Math. Logic, 9:1 (1976), 49–121 | DOI | MR | Zbl

[74] Stroyan K. D., Luxemburg W. A. J., Introduction to the Theory of Infinitesimals, Academic Press, New York etc., 1976 | MR | Zbl

[75] Takeuti G., “Quantum set theory”, Current Issues in Quantum Logic (Erice, 1979), Plenum Press, New York–London, 1981, 303–322 | MR

[76] Takeuti G., Titani S., “Globalization of intuitionistic set theory”, Ann. Pure Appl. Logic, 33:2 (1987), 195–211 | DOI | MR | Zbl

[77] Takeuti G., Titani S., “Heyting-valued universes of intuitionistic set theory”, Logic Symposia, Hakone 1979, 1980 (Hakone, 1979/1980), Springer, Berlin–New York, 1981, 189–306 | MR

[78] Takeuti G., Zaring W. M., Axiomatic Set Theory, Springer, New York, 1973, 238 pp. | MR | Zbl

[79] Troickiĭ V. G., “Nonstandard discretization and the Loeb extension of family of measures”, Sibirsk. Mat. Zh., 34:3 (1993), 190–198 | MR

[80] Veksler A. I., Gordon E. I., “Nonstandard extension of not-everywheredefined positive operators”, Sibirsk. Mat. Zh., 35:4 (1994), 720–727 | MR

[81] Vershik A. M., Gordon E. I., “The groups locally embedded into the class of finite groups”, Algebra and Analysis, 9:1 (1997), 71–97 | MR | Zbl

[82] Wolff M. P. H., “An introduction to nonstandard functional analysis”, Nonstandard Analysis, Theory and Applications, eds. L. O. Arkeryd, N. J. Cutland, C. Ward Henson, Kluwer, Dordrecht, 1997, 121–151 | MR | Zbl

[83] Zvonkin A. K., Shubin M. A., “Nonstandard analysis and singular perturbations of ordinary differential operators”, Uspekhi Mat. Nauk, 39:2 (1984), 77–127 | MR