Cyclically compact operators in Banach spaces
Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 1, pp. 10-23 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Boolean-valued interpretation of compactness gives rise to the new notions of cyclically compact sets and operators which deserves an independent study. A part of the corresponding theory is presented in this work. General form of cyclically compact operators in Kaplansky–Hilbert module as well as a variant of Fredholm Alternative for cyclically compact operators are also given.
@article{VMJ_2000_2_1_a1,
     author = {A. G. Kusraev},
     title = {Cyclically compact operators in {Banach} spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {10--23},
     year = {2000},
     volume = {2},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2000_2_1_a1/}
}
TY  - JOUR
AU  - A. G. Kusraev
TI  - Cyclically compact operators in Banach spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2000
SP  - 10
EP  - 23
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2000_2_1_a1/
LA  - en
ID  - VMJ_2000_2_1_a1
ER  - 
%0 Journal Article
%A A. G. Kusraev
%T Cyclically compact operators in Banach spaces
%J Vladikavkazskij matematičeskij žurnal
%D 2000
%P 10-23
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2000_2_1_a1/
%G en
%F VMJ_2000_2_1_a1
A. G. Kusraev. Cyclically compact operators in Banach spaces. Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 1, pp. 10-23. http://geodesic.mathdoc.fr/item/VMJ_2000_2_1_a1/

[1] Kusraev A. G., Kutateladze S. S., Boolean Valued Analysis, Kluwer Academic Publishers, Dordrecht, 1999 | MR | Zbl

[2] Bell J. L., Boolean-Valued Models and Independence Proofs in Set Theory, Clarendon Press, New York etc., 1985 | MR | Zbl

[3] Kusraev A. G., Vector Duality and Its Applications, Nauka, Novosibirsk, 1985 (in Russian) | MR | Zbl

[4] Kutateladze S. S., Fundamentals of Functional Analysis, Kluwer Academic Publishers, Dordrecht, 1998 | MR

[5] Takeuti G., “Von Neumann algebras and Boolean valued analysis”, J. Math. Soc. Japan, 35:1 (1983), 1–21 | DOI | MR | Zbl

[6] Takeuti G., “$C^*$-algebras and Boolean valued analysis”, Japan. J. Math. (N.S.), 9:2 (1983), 207–246 | MR | Zbl

[7] Ozawa M., “Boolean valued interpretation of Hilbert space theory”, J. Math. Soc. Japan, 35:4 (1983), 609–627 | DOI | MR | Zbl

[8] Kusraev A. G., “Boolean valued analysis of duality between universally complete modules”, Dokl. Akad. Nauk SSSR, 267:5 (1982), 1049–1052 | MR | Zbl

[9] Kusraev A. G., Kutateladze S. S., “Nonstandard methods for Kantorovich spaces”, Siberian Adv. Math., 2:2 (1992), 114–152 | MR | Zbl

[10] Kutateladze S. S., “Cyclic monads and their applications”, Sib. Mat. Zh., 30:1 (1989), 100–110 | DOI | MR

[11] Kutateladze S. S., “Monads of ultrafilters and extensional filters”, Sib. Mat. Zh., 30:1 (1989), 129–133 | MR

[12] Gutman A. E., Emel'yanov E. Yn., Kusraev A. G., Kutateladze S. S., Nonstandard Analysis and Vector Lattices, Sobolev Institute Press, Novosibirsk, 1999

[13] Dodds P. G., Fremlin D. H., “Compact operators in Banach lattices”, Israel J. Math., 34 (1979), 287–320 | DOI | MR | Zbl

[14] Aliprantis C. D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985 | MR | Zbl

[15] Kusraev A. G., “Linear operators in lattice-normed spaces”, Studies on Geometry in the Large and Mathematical Analysis, 9, Novosibirsk, 1987, 84–123 | MR | Zbl