On combined nonstandard methods in functional analysis
Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 1, pp. 3-9 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The main nonstandard tool-kits are known as infinitesimal analysis (Robinson's nonstandard analysis) and Boolean-valued analysis. Sharp distinctions between these two versions of nonstandard analysis in content and technique notwithstanding, many ways are open to their simultaneous application. One of the simplest approaches consists in successive application of different nonstandard methods. It is demonstrated that combining is often useful in settling the problems of functional analysis which stem mainly from the theory of vector lattices.
@article{VMJ_2000_2_1_a0,
     author = {A. G. Kusraev and S. S. Kutateladze},
     title = {On combined nonstandard methods in functional analysis},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {3--9},
     year = {2000},
     volume = {2},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/VMJ_2000_2_1_a0/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - S. S. Kutateladze
TI  - On combined nonstandard methods in functional analysis
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 2000
SP  - 3
EP  - 9
VL  - 2
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_2000_2_1_a0/
LA  - en
ID  - VMJ_2000_2_1_a0
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A S. S. Kutateladze
%T On combined nonstandard methods in functional analysis
%J Vladikavkazskij matematičeskij žurnal
%D 2000
%P 3-9
%V 2
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_2000_2_1_a0/
%G en
%F VMJ_2000_2_1_a0
A. G. Kusraev; S. S. Kutateladze. On combined nonstandard methods in functional analysis. Vladikavkazskij matematičeskij žurnal, Tome 2 (2000) no. 1, pp. 3-9. http://geodesic.mathdoc.fr/item/VMJ_2000_2_1_a0/

[1] Kusraev A. G., Kutateladze S. S., Nonstandard Methods of Analysis, Nauka, Novosibirsk, 1990 ; Kluwer, Dordrecht, 1995 | MR | Zbl

[2] Kusraev A. G., Kutateladze S. S., “On combining nonstandard methods”, Sibirsk. Mat. Zh., 31:5 (1990), 69–78 | MR

[3] Kutateladze S. S., “Monads of proultrafilters and extensional filters”, Sibirsk. Mat. Zh., 30:1 (1989), 129–133 | MR

[4] Kusraev A. G., Kutateladze S. S., “On nonstandard methods in functional analysis”, Interaction between Functional Analysis, Harmonic Analysis and Probability, Marcel Dekker Inc., New York etc., 1995, 301–307 | MR

[5] Kusraev A. G., Kutateladze S. S., “On combined nonstandard methods in the theory of positive operators”, Matematychni Studii, 7:1 (1997), 33–40 | MR | Zbl

[6] Takeuti G., Zaring W. M., Axiomatic Set Theory, Springer-Verlag, New York, 1973 | MR | Zbl

[7] Gordon E. I., “The reals in Boolean-valued models of set theory and $K$-spaces”, Dokl. Akad. Nauk SSSR, 237:4 (1977), 773–775 | MR | Zbl

[8] Aliprantis C. D., Burkinshaw O., Positive Operators, Academic Press, New York, 1985 | MR | Zbl

[9] Luxemburg W. A. J., Zaanen A. C., Riesz Spaces, v. 1, North-Holland, Amsterdam–London, 1971 | Zbl

[10] Kusraev A. G., Vector Duality and Its Applications, Nauka, Novosibirsk, 1985 | MR | Zbl

[11] Loeb P., “A nonstandard representation of measurable spaces, $L_{\infty}$, and $L_{\infty}^*$”, Contributions to Nonstandard Analysis, eds. Luxemburg W. A. J., Robinson A., North-Holland, Amsterdam–London, 1972, 65–80 | MR

[12] Kusraev A. G., Malyugin S. A., Some Questions of the Theory of Vector Measures, Sobolev Institute of Mathematics, Novosibirsk, 1988

[13] Kusraev A. G., Malyugin S. A., “Atomic decomposition of vector measures”, Sibirsk. Mat. Zh., 30:5 (1989), 101–120 | MR

[14] Kusraev A. G., Malyugin S. A., “Extension of finitely additive vector measures”, Mat. Zametki, 48:1 (1990), 56–60 | MR | Zbl

[15] Kusraev A. G., “On functional representation of type I $AW^*$-algebras”, Sibirsk. Mat. Zh., 32:2 (1991), 78–88 | MR | Zbl

[16] Kusraev A. G., “Boolean-valued analysis and $JB$-algebras”, Sibirsk. Mat. Zh., 35:1 (1994), 124–134 | MR | Zbl