he distance from a point to a cone in a Hilbert space
Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 4, pp. 38-42
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{VMJ_1999_1_4_a3,
author = {V. T. Khudalov},
title = {he distance from a point to a cone in a {Hilbert} space},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {38--42},
year = {1999},
volume = {1},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_1999_1_4_a3/}
}
V. T. Khudalov. he distance from a point to a cone in a Hilbert space. Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 4, pp. 38-42. http://geodesic.mathdoc.fr/item/VMJ_1999_1_4_a3/
[1] Khudalov V. T., “Regulyarnye konusy v gilbertovom prostranstve”, Sib. mat. zhurn., 37:1 (1996), 193–196 | MR | Zbl
[2] Khudalov V. T., “Approksimativnye svoistva polozhitelnoi i otritsatelnoi chastei elementa v uporyadochennykh banakhovykh prostranstvakh”, Mat. zametki, 1996, no. 5, 793–798 | MR | Zbl
[3] Khudalov V. T., “V gilbertovom prostranstve regulyarnost konusa ravnosilna samosopryazhennosti”, Matem. zametki, 64:4 (1998), 616–621 | MR | Zbl
[4] Khudalov V. T., Uporyadochennye banakhovy prostranstva i ikh prilozheniya, Vladikavkaz, 1999, 200 pp.
[5] Khorn R., Dzhonson Ch., Matrichnyi analiz, Mir, M., 1989, 655 pp. | MR