A problem in the theory of heat conduction with one thermally isolated boundary
Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 4, pp. 17-20
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{VMJ_1999_1_4_a1,
author = {N. N. Karkusty},
title = {A problem in the theory of heat conduction with one thermally isolated boundary},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {17--20},
year = {1999},
volume = {1},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VMJ_1999_1_4_a1/}
}
N. N. Karkusty. A problem in the theory of heat conduction with one thermally isolated boundary. Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 4, pp. 17-20. http://geodesic.mathdoc.fr/item/VMJ_1999_1_4_a1/
[1] Nobl B., Primenenie metoda Vinera–Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, IL, M., 1962, 279 pp. | MR
[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1966, 511 pp. | MR
[3] Karkuzashvili N. N., “Zadacha o neustanovivshemsya temperaturnom pole v neogranichennoi plastinke so smeschennymi granichnymi usloviyami”, Nekotorye voprosy prikladnoi matematiki, 1, Naukova Dumka, Kiev, 1971, 52–57
[4] Kovalenko A. D., Osnovy termouprugosti, Nauka dumka, Kiev, 1970, 307 pp. | Zbl