A problem in the theory of heat conduction with one thermally isolated boundary
Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 4, pp. 17-20 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_1999_1_4_a1,
     author = {N. N. Karkusty},
     title = {A problem in the theory of heat conduction with one thermally isolated boundary},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {17--20},
     year = {1999},
     volume = {1},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_1999_1_4_a1/}
}
TY  - JOUR
AU  - N. N. Karkusty
TI  - A problem in the theory of heat conduction with one thermally isolated boundary
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 1999
SP  - 17
EP  - 20
VL  - 1
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VMJ_1999_1_4_a1/
LA  - ru
ID  - VMJ_1999_1_4_a1
ER  - 
%0 Journal Article
%A N. N. Karkusty
%T A problem in the theory of heat conduction with one thermally isolated boundary
%J Vladikavkazskij matematičeskij žurnal
%D 1999
%P 17-20
%V 1
%N 4
%U http://geodesic.mathdoc.fr/item/VMJ_1999_1_4_a1/
%G ru
%F VMJ_1999_1_4_a1
N. N. Karkusty. A problem in the theory of heat conduction with one thermally isolated boundary. Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 4, pp. 17-20. http://geodesic.mathdoc.fr/item/VMJ_1999_1_4_a1/

[1] Nobl B., Primenenie metoda Vinera–Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, IL, M., 1962, 279 pp. | MR

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1966, 511 pp. | MR

[3] Karkuzashvili N. N., “Zadacha o neustanovivshemsya temperaturnom pole v neogranichennoi plastinke so smeschennymi granichnymi usloviyami”, Nekotorye voprosy prikladnoi matematiki, 1, Naukova Dumka, Kiev, 1971, 52–57

[4] Kovalenko A. D., Osnovy termouprugosti, Nauka dumka, Kiev, 1970, 307 pp. | Zbl