Infinitely fine partitions of measures spaces
Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 3, pp. 53-59
@article{VMJ_1999_1_3_a6,
author = {V. G. Troitsky},
title = {Infinitely fine partitions of measures spaces},
journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
pages = {53--59},
year = {1999},
volume = {1},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/VMJ_1999_1_3_a6/}
}
V. G. Troitsky. Infinitely fine partitions of measures spaces. Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 3, pp. 53-59. http://geodesic.mathdoc.fr/item/VMJ_1999_1_3_a6/
[1] Loeb P. A., “A nonstandard representation of measurable spaces, $L_\infty$, and $L_\infty^*$”, Contributions to Nonstandard Analysis, 1972, 65–80 | MR | Zbl
[2] Rao B. K. P. S., Rao B. M., Theory of charges, London, 1983, 141–143
[3] Sun Y., “On the theory of vector valued Loeb measures and integration”, J. Funct. Anal., 104 (1992), 327–362 | DOI | MR | Zbl
[4] Kusraev A. G., Malugin S. A., “On atomic decomposition of vector measures”, Siberian Mathematical Journal, 30:5 (1989), 101–110 | MR | Zbl