Orthogonally additive operators in lattice-normed spaces
Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 3, pp. 31-41 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_1999_1_3_a3,
     author = {A. G. Kusraev and M. A. Pliev},
     title = {Orthogonally additive operators in lattice-normed spaces},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {31--41},
     year = {1999},
     volume = {1},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_1999_1_3_a3/}
}
TY  - JOUR
AU  - A. G. Kusraev
AU  - M. A. Pliev
TI  - Orthogonally additive operators in lattice-normed spaces
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 1999
SP  - 31
EP  - 41
VL  - 1
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VMJ_1999_1_3_a3/
LA  - ru
ID  - VMJ_1999_1_3_a3
ER  - 
%0 Journal Article
%A A. G. Kusraev
%A M. A. Pliev
%T Orthogonally additive operators in lattice-normed spaces
%J Vladikavkazskij matematičeskij žurnal
%D 1999
%P 31-41
%V 1
%N 3
%U http://geodesic.mathdoc.fr/item/VMJ_1999_1_3_a3/
%G ru
%F VMJ_1999_1_3_a3
A. G. Kusraev; M. A. Pliev. Orthogonally additive operators in lattice-normed spaces. Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 3, pp. 31-41. http://geodesic.mathdoc.fr/item/VMJ_1999_1_3_a3/

[1] Vulikh B. Z., Vvedenie v teoriyu poluuporyadochennykh prostranstv, Fizmatgiz, M., 1961 | MR

[2] Kantorovich L. V., Akilov G. P., Funktsionalnyi analiz, Nauka, M., 1984 | MR | Zbl

[3] Kusraev A. G., Mazhoriruemye operatory. Lineinye operatory soglasovannye s poryadkom, Izd-vo IM SO RAN, Novosibirsk, 1995 | MR

[4] Aliprantis C. D., Burkinshaw O., “The components of a positive operator”, Math. Z., 184 (1987), 245–257 | DOI | MR

[5] Mazon J. M., Segura de Leon S., “Order bounded ortogonally additive operators”, Rev. Roumaine Math. Pures Appl., 35(4) (1990), 329–353 | MR | Zbl

[6] Segura de Leon S., “Bukhvalov type characterizations of Uryson operators”, Studia Math., 99 (1991), 199–220 | MR | Zbl