On a plane problem in heat conduction theory with mixed boundary conditions
Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 1, pp. 23-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_1999_1_1_a1,
     author = {N. N. Karkusty},
     title = {On a plane problem in heat conduction theory with mixed boundary conditions},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {23--29},
     year = {1999},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_1999_1_1_a1/}
}
TY  - JOUR
AU  - N. N. Karkusty
TI  - On a plane problem in heat conduction theory with mixed boundary conditions
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 1999
SP  - 23
EP  - 29
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_1999_1_1_a1/
LA  - ru
ID  - VMJ_1999_1_1_a1
ER  - 
%0 Journal Article
%A N. N. Karkusty
%T On a plane problem in heat conduction theory with mixed boundary conditions
%J Vladikavkazskij matematičeskij žurnal
%D 1999
%P 23-29
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_1999_1_1_a1/
%G ru
%F VMJ_1999_1_1_a1
N. N. Karkusty. On a plane problem in heat conduction theory with mixed boundary conditions. Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 1, pp. 23-29. http://geodesic.mathdoc.fr/item/VMJ_1999_1_1_a1/

[1] Nobl B., Primenenie metoda Vinera–Khopfa dlya resheniya differentsialnykh uravnenii v chastnykh proizvodnykh, Izd-vo IL, M., 1962

[2] Muskhelishvili N. I., Singulyarnye integralnye uravneniya, Nauka, M., 1968 | MR

[3] Karkuzashvili N. N., “Zadacha o neustanovlennom temperaturnom pole v neogranichennoi plastinke so smeshannymi granichnymi usloviyami”, Nekotorye voprosy prikladnoi matematiki, 1, Naukova dumka, Kiev, 1971, 52–57

[4] Karslou G., Eger D., Teploprovodnost tverdykh tel, Nauka, M., 1964