On exceptional sets in $L_p$ potential theory
Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 1, pp. 5-22 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

@article{VMJ_1999_1_1_a0,
     author = {N. O. Belova},
     title = {On exceptional sets in $L_p$ potential theory},
     journal = {Vladikavkazskij matemati\v{c}eskij \v{z}urnal},
     pages = {5--22},
     year = {1999},
     volume = {1},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VMJ_1999_1_1_a0/}
}
TY  - JOUR
AU  - N. O. Belova
TI  - On exceptional sets in $L_p$ potential theory
JO  - Vladikavkazskij matematičeskij žurnal
PY  - 1999
SP  - 5
EP  - 22
VL  - 1
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/VMJ_1999_1_1_a0/
LA  - ru
ID  - VMJ_1999_1_1_a0
ER  - 
%0 Journal Article
%A N. O. Belova
%T On exceptional sets in $L_p$ potential theory
%J Vladikavkazskij matematičeskij žurnal
%D 1999
%P 5-22
%V 1
%N 1
%U http://geodesic.mathdoc.fr/item/VMJ_1999_1_1_a0/
%G ru
%F VMJ_1999_1_1_a0
N. O. Belova. On exceptional sets in $L_p$ potential theory. Vladikavkazskij matematičeskij žurnal, Tome 1 (1999) no. 1, pp. 5-22. http://geodesic.mathdoc.fr/item/VMJ_1999_1_1_a0/

[1] Mazya V. G., Khavin V. P., “Nelineinaya teoriya potentsiala”, Uspekhi mat. nauk, 27:6 (1972), 67–138 | MR

[2] Adams D. R., Meyers N. G., “Thiness and Wiener Criteria for Non-linear Potentials”, Indiana Univ. Math. J., 22:2 (1972), 169–197 | DOI | MR | Zbl

[3] Adams D. R., Meyers N. G., “Bessel potentials. Inclusion relations among classes of exceptional sets”, Indiana Univ. Math. J., 22:9 (1973), 873–905 | DOI | MR | Zbl

[4] Hedberg L. I., Wolff T. H., “Thin sets in nonlinear potential theory”, Ann. Inst. Fourier (Grenoble), 33:4 (1983), 161–187 | MR | Zbl

[5] Adams D. R., “Weighted nonlinear potential theory”, Trans. Amer. Math. Soc., 297:1 (1986), 73–94 | DOI | MR | Zbl

[6] Vodopyanov S. K., “Printsip maksimuma v teorii potentsiala i teoremy vlozheniya dlya anizotropnykh prostranstv differentsiruemykh funktsii”, Sib. mat. zhurn., 29:2 (1988), 17–33 | MR

[7] Vodopyanov S. K., “Teoriya potentsiala na odnorodnykh gruppakh”, Mat. sb., 180:1 (1989), 57–77 | MR

[8] Vodopyanov S. K., “$L_p$-teoriya potentsiala i kvazikonformnye otobrazheniya na odnorodnykh gruppakh”, Sovremennye problemy geometrii i analiza, Tr. In-ta matematiki SO AN SSSR, 14, Nauka, Novosibirsk, 1989, 45–89 | MR

[9] Vodopyanov S. K., $L_p$-teoriya potentsiala dlya obobschennykh yader i ee prilozheniya, Preprint No 6, AN SSSR. Sib. otd-nie. In-t matematiki, Novosibirsk, 1990, 48 pp.

[10] Sjodin T., Non-linear potential theory in Lebesgue spaces with mixed norm and extension of continuous functions on compact sets, Preprint No 5, Un-t of Umea, Umea, 1987, 32 pp.

[11] Landkof N. S., Osnovy sovremennoi teorii potentsiala, Nauka, M., 1966 | MR | Zbl

[12] Karleson L., Izbrannye problemy teorii isklyuchitelnykh mnozhestv, Mir, M., 1971 | MR | Zbl

[13] Wiener N., “The Dirichlet problem”, J. Math. Phys. Mass. Inst. Tech., 3 (1921), 127–146

[14] Brelot M., On topologies and Boundaries in Potential Theory, Lecture notes in mathematics, 175, Springer, Berlin a.o., 1971 | MR | Zbl

[15] Mazya V. G., “O nepreryvnosti v granichnoi tochke reshenii kvazilineinykh ellipticheskikh uravnenii”, Vestn. LGU. Matematika. Mekhanika. Astronomiya, 27:13 (1970), 42–55 ; 27:1 (1972), 160 | MR

[16] Gariepy R., Ziemer W. P., “A reqularity condition at the boundary for solutions of quasilinear elliptic”, Arch. Rat. Mech. Anal., 67:1 (1977), 25–39 | DOI | MR | Zbl

[17] Skrypnik I. V., “Kriterii regulyarnosti granichnoi tochki dlya kvazilineinykh ellipticheskikh uravnenii”, Dokl. AN SSSR, 274:6 (1981), 1040–1043 | MR

[18] Lindqvist P., Martio O., “Two theorems of N. Wiener for solutions of quasilinear elliptic equations”, Acta Math., 155 (1988), 153–171 | DOI | MR

[19] Fabes E., Jerison D., Kenig C., “The Wiener test for degenerate elliptic equations”, Ann. Inst. Fourier (Grenoble), 32:3 (1982), 151–182 | MR

[20] Mosco U., “Wiener criteria and variational convergences”, Lecture Notes Math., 1340, 1988, 208–238 | MR | Zbl

[21] Mosco U., “Wiener Criterion and Potential Estimates for the Obstacle Problem”, Ind. Univ. Math. J., 36:3 (1987), 455–494 | DOI | MR | Zbl

[22] Hedberg L. I., “Approximation in Sobolev Spaces and Nonlinear Potential Theory”, Proc. Symp. Pure Math., 45 (1986), 473–480 | MR | Zbl

[23] Hedberg L. I., “Spectral Sinthesis in Sobolev Spaces and Uniqueness of Solutions of the Dirichlet problem”, Acta Math., 147 (1981), 237–264 | DOI | MR | Zbl

[24] Fuglede B., Quasi topology and fine topology, Seminaire Brelot-Shoquet-Deny, 10, 1965–1966

[25] Hedberg L. I., “Non-linear potentials and approximation in the mean by analytic functions”, Math. Z., 129 (1972), 299–319 | DOI | MR | Zbl

[26] Coifman R. R., Weiss G., Analyse Harmonique Non-Commutative sur Certains spaces Homogeneous, Lecture notes in mathematics, 242, Springer, Berlin a.o., 1971 | MR | Zbl

[27] Dynkin E. M., Osilenker B. P., “Vesovye otsenki singulyarnykh integralov i ikh prilozheniya”, Itogi nauki i tekhn. VINITI. Mat. analiz, 21, 1983, 42–129 | MR | Zbl

[28] Volberg A. L., Konyagin S. V., “O merakh s usloviem udvoeniya”, Izv. AN SSSR. Ser. mat., 51:3 (1987), 666–675 | MR

[29] Maciac R. A., Segovia C., “A well behaved quasi-distance for spaces of homogeneous type”, Trab. mat. Inst. argent. mat., 1981, no. 32, 18

[30] Muckenhoupt B., “The equivalence of two conditions for weight functions”, Studia Math., 19 (1974), 101–106 | MR

[31] Sawyer E. T., “Two weght norm inegualities for certain maximal and integral operators”, Lect. Notes Math., 908, Springer, Berlin a.o., 1982, 102–127 | MR

[32] Meyers N. G., “A theory of capacities for potentials of functions in Lebesgue classes”, Math. Scand., 26:2 (1970), 255–292 | MR | Zbl

[33] Vodopyanov S. K., “Vesovaya $L_p$-teoriya potentsiala na odnorodnykh gruppakh”, Sib. mat. zhurn., 33:2 (1992), 27–48 | MR

[34] Ahlfors L., Beurling A., “Conformal invariants and function-theoretic null-sets”, Acta Math., 83 (1950), 101–129 | DOI | MR | Zbl