Mots-clés : Volterra vector equation.
@article{VKAM_2024_49_4_a5,
author = {E. A. Kazakov},
title = {Numerical scheme for one integro-differential system related to the problem of space dynamo},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {85--98},
year = {2024},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a5/}
}
TY - JOUR AU - E. A. Kazakov TI - Numerical scheme for one integro-differential system related to the problem of space dynamo JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 85 EP - 98 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a5/ LA - ru ID - VKAM_2024_49_4_a5 ER -
E. A. Kazakov. Numerical scheme for one integro-differential system related to the problem of space dynamo. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 85-98. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a5/
[1] Vodinchar G., “Hereditary Oscillator Associated with the Model of a Large-Scale $\alpha\omega$-Dynamo”, Mathematics, 8(11) (2020), 2065 DOI: 10.3390/math8112065 | DOI
[2] Kazakov E. A., “Ereditarnaya malomodovaya model dinamo”, Vestnik KRAUNTs. Fiz.-mat. nauki., 35(2) (2021), 40-47 DOI: 10.26117/2079-6641-2021-35-2-40-47 | DOI | MR | Zbl
[3] Vasileva A. B., Tikhonov N. A., Integralnye uravneniya, Fizmatlit, M., 2002
[4] Bandurin N. G., “Chislennoe reshenie suschestvenno nelineinykh integro-differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vychislitelnye tekhnologii, 15(3) (2010), 31–38 | Zbl
[5] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Integralnye uravneniya, Nauka, M., 1968
[6] Amosov A. A., Dubinskii Yu. A., Kopchenova N. V.., Chislennye metody dlya inzhenerov, Vysshaya shkola, M., 1994
[7] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1968 | MR
[8] Kalitkin N. N., Chislennye metody, Nauka, M., 1978
[9] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969
[10] Griffiths D. V., Smith I. M., Numerical methods for engineers, CRC, Chapman and Hall, 2006 | MR | Zbl
[11] Moheuddin M.M., Titu M.A.S., Hossai S., “A New Analysis of Approximate Solutions for Numerical Integration Problems with Quadrature-based Methods”, Pure and Applied Mathematics Journal, 9:3 (2020), 46-54 DOI: 0.11648/j.pamj.20200903.11 | DOI
[12] Vodinchar G. M., Kazakov E.A., “Isklyuchenie integralnogo chlena v uravneniyakh odnoi ereditarnoi sistemy, svyazannoi s zadachei gidromagnitnogo dinamo”, Vestnik KRAUNTs. Fiz.-mat. nauki., 42(1) (2023), 180-190 DOI: doi.org/10.26117/2079-6641-2023-42-1-180-190 | DOI | MR | Zbl
[13] Vodinchar G., Kazakov E., “The Lorenz system and its generalizations as dynamo models with memory”, E3S Web of Conf, 62 (2018) DOI: 10.1051/e3sconf/20186202011
[14] Demidovich B. P., Maron I. A., Shuvalova E. 3., Chislennye metody analiza. Priblizhenie funktsii, differentsialnye i integralnye uravneniya, Nauka, M., 1967
[15] Dekker K., Verver Ya., Ustoichivost metodov Runge- Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR
[16] Khashin S. I., “Otsenka pogreshnosti klassicheskikh metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 54:5 (2014), 746–754 | DOI | MR | Zbl
[17] Gautschi W., Numerical analysis, Science $\$ Business Media, Springer, 2011