Numerical scheme for one integro-differential system related to the problem of space dynamo
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 85-98 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article is devoted to the description of the developed numerical scheme for modeling a hereditary dynamic system, which is a model of a two-mode hydromagnetic dynamo. The models include two magnetic field generators – large-scale and turbulent ($\alpha$-effect). The influence of the magnetic field on the motion of the medium is presented through the suppression of the $\alpha$-effect by the functional of the field components, which introduces memory into the model (hereditary). The model is described by an integro-differential system of equations. The paper presents the numerical scheme itself and investigates the order of accuracy on nested grids. The numerical scheme consists of two parts, the trapezoid method is used for the differential part, and the trapezoid quadrature formula is used for the integral part. As a result of conjugation of the schemes, we obtain a nonlinear algebraic system of equations. To solve such a system, it is necessary to involve methods for nonlinear algebraic systems. In this paper, the Newton method was chosen. It is shown that in the case of an exponential kernel of the suppression functional, the model can be reduced to the classical Lorenz system. The known nature of the dynamics of the Lorenz system for various parameters allowed us to verify the numerical scheme. It is shown that the numerical scheme allows us to qualitatively solve the integro-differential system of equations, which is a model of a cosmic dynamo. This numerical scheme was developed for a specific model, but can be easily generalized for other quadratic-nonlinear integro-differential systems.
Keywords: hydromagnetic dynamo, systems with memory, heredity, integro-differential equations, numerical scheme
Mots-clés : Volterra vector equation.
@article{VKAM_2024_49_4_a5,
     author = {E. A. Kazakov},
     title = {Numerical scheme for one integro-differential system related to the problem of space dynamo},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {85--98},
     year = {2024},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a5/}
}
TY  - JOUR
AU  - E. A. Kazakov
TI  - Numerical scheme for one integro-differential system related to the problem of space dynamo
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 85
EP  - 98
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a5/
LA  - ru
ID  - VKAM_2024_49_4_a5
ER  - 
%0 Journal Article
%A E. A. Kazakov
%T Numerical scheme for one integro-differential system related to the problem of space dynamo
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 85-98
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a5/
%G ru
%F VKAM_2024_49_4_a5
E. A. Kazakov. Numerical scheme for one integro-differential system related to the problem of space dynamo. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 85-98. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a5/

[1] Vodinchar G., “Hereditary Oscillator Associated with the Model of a Large-Scale $\alpha\omega$-Dynamo”, Mathematics, 8(11) (2020), 2065 DOI: 10.3390/math8112065 | DOI

[2] Kazakov E. A., “Ereditarnaya malomodovaya model dinamo”, Vestnik KRAUNTs. Fiz.-mat. nauki., 35(2) (2021), 40-47 DOI: 10.26117/2079-6641-2021-35-2-40-47 | DOI | MR | Zbl

[3] Vasileva A. B., Tikhonov N. A., Integralnye uravneniya, Fizmatlit, M., 2002

[4] Bandurin N. G., “Chislennoe reshenie suschestvenno nelineinykh integro-differentsialnykh uravnenii s zapazdyvayuschim argumentom”, Vychislitelnye tekhnologii, 15(3) (2010), 31–38 | Zbl

[5] Zabreiko P. P., Koshelev A. I., Krasnoselskii M. A., Integralnye uravneniya, Nauka, M., 1968

[6] Amosov A. A., Dubinskii Yu. A., Kopchenova N. V.., Chislennye metody dlya inzhenerov, Vysshaya shkola, M., 1994

[7] Korn G., Korn T., Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov, Nauka, M., 1968 | MR

[8] Kalitkin N. N., Chislennye metody, Nauka, M., 1978

[9] Elsgolts L. E., Differentsialnye uravneniya i variatsionnoe ischislenie, Nauka, M., 1969

[10] Griffiths D. V., Smith I. M., Numerical methods for engineers, CRC, Chapman and Hall, 2006 | MR | Zbl

[11] Moheuddin M.M., Titu M.A.S., Hossai S., “A New Analysis of Approximate Solutions for Numerical Integration Problems with Quadrature-based Methods”, Pure and Applied Mathematics Journal, 9:3 (2020), 46-54 DOI: 0.11648/j.pamj.20200903.11 | DOI

[12] Vodinchar G. M., Kazakov E.A., “Isklyuchenie integralnogo chlena v uravneniyakh odnoi ereditarnoi sistemy, svyazannoi s zadachei gidromagnitnogo dinamo”, Vestnik KRAUNTs. Fiz.-mat. nauki., 42(1) (2023), 180-190 DOI: doi.org/10.26117/2079-6641-2023-42-1-180-190 | DOI | MR | Zbl

[13] Vodinchar G., Kazakov E., “The Lorenz system and its generalizations as dynamo models with memory”, E3S Web of Conf, 62 (2018) DOI: 10.1051/e3sconf/20186202011

[14] Demidovich B. P., Maron I. A., Shuvalova E. 3., Chislennye metody analiza. Priblizhenie funktsii, differentsialnye i integralnye uravneniya, Nauka, M., 1967

[15] Dekker K., Verver Ya., Ustoichivost metodov Runge- Kutty dlya zhestkikh nelineinykh differentsialnykh uravnenii, Mir, M., 1988 | MR

[16] Khashin S. I., “Otsenka pogreshnosti klassicheskikh metodov Runge–Kutty”, Zh. vychisl. matem. i matem. fiz., 54:5 (2014), 746–754 | DOI | MR | Zbl

[17] Gautschi W., Numerical analysis, Science $\$ Business Media, Springer, 2011