Mots-clés : fractional Poisson process
@article{VKAM_2024_49_4_a3,
author = {O. V. Sheremetyeva and B. M. Shevtsov},
title = {Characteristics of the deformation process in the subduction zone of the {Kuril-Kamchatka} island arc in the aftershock phase based on a fractional model of deformation activity},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {50--64},
year = {2024},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a3/}
}
TY - JOUR AU - O. V. Sheremetyeva AU - B. M. Shevtsov TI - Characteristics of the deformation process in the subduction zone of the Kuril-Kamchatka island arc in the aftershock phase based on a fractional model of deformation activity JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 50 EP - 64 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a3/ LA - ru ID - VKAM_2024_49_4_a3 ER -
%0 Journal Article %A O. V. Sheremetyeva %A B. M. Shevtsov %T Characteristics of the deformation process in the subduction zone of the Kuril-Kamchatka island arc in the aftershock phase based on a fractional model of deformation activity %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2024 %P 50-64 %V 49 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a3/ %G ru %F VKAM_2024_49_4_a3
O. V. Sheremetyeva; B. M. Shevtsov. Characteristics of the deformation process in the subduction zone of the Kuril-Kamchatka island arc in the aftershock phase based on a fractional model of deformation activity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 50-64. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a3/
[1] Shevtsov B. M., Sagitova R. N., “Statistical analysis of seismic processes on the basis of the diffusion approach”, Doklady Earth Sciences, 426:1 (2009), 642-644 | DOI
[2] Shevtsov B. M., Sagitova R. N., “Diffuzionnyi podkhod v statisticheskom analize seismichnosti Kamchatki”, Vulkanologiya i seismologiya, 6:2 (2012), 56-66
[3] Shevtsov B. M., Sheremetyeva O. V., “Fractional models of seismoacoustic and electromagnetic activity”, E3S Web of Conferences: Solar-Terrestrial Relations and Physics of Earthquake Precursors, 20 (2017), 02013 DOI: 10.1051/e3sconf/20172002013
[4] Sheremeteva O. V., “Model protsessov relaksatsii v razlichnykh rezhimakh plasticheskikh deformatsii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 25:5 (2018), 74–82 DOI:10.18454/2079-6641-2018-25-5-74-82 | MR
[5] Sheremeteva O. V., “Stepennye zakonomernosti v posledovatelnostyakh statisticheski svyazannykh sobytii, predshestvuyuschikh glavnomu sobytiyu”, Vestnik KRAUNTs. Fiz.-mat. nauki, 33:4 (2020), 102-109 DOI: 10.26117/2079- 6641-2020-33-4-102-109 | DOI | Zbl
[6] Shevtsov B. M., “Relaxation oscillations in energy active zones”, E3S Web of Conf., 196:02026 (2020) DOI: 10.1051/e3sconf/202019602026
[7] Sheremetyeva O. V., Shevtsov B. M., “Fractional Model of the Deformation Process”, Fractal Fract., 6 (2022), 372 DOI: 10.3390/fractalfract6070372 | DOI
[8] Janossy L., Renyi A., Aczel J., “On composed Poisson distributions”, I. Acta Math. Acad. Sci. Hungar., 1 (1950), 209–224 | DOI | MR | Zbl
[9] Adelson R. M., “Compound Poisson distributions”, Oper. Res. Quart., 17 (1966), 73–75 | DOI
[10] Di Crescenzo A., Martinucci B., Meoli A., “A fractional counting process and its connection with the Poisson process”, ALEA Lat. Am. J. Probab. Math. Stat., 13:1 (2016), 291–307 DOI: 10.30757/ALEA.v13-12 | DOI | MR | Zbl
[11] Beghin L., Macci C., “Multivariate fractional Poisson processes and compound sums”, Adv. in Appl. Probab., 48:3 (2016) DOI: 10.1017/apr.2016.23 | DOI | MR | Zbl
[12] Khandakar M., Kataria K. K., “Some Compound Fractional Poisson Processes”, Fractal Fract., 7(1):15 (2023) DOI: 10.3390/fractalfract7010015
[13] Kanamori H., “The Energy Release in Great Earthquakes”, J. of Geophysical Research, 82:20 (1977), 2981–2987 | DOI
[14] Gutenberg B., Richter C. F., “Seismicity of the Earth”, Geol. Soc. Am. Bull., 1944, no. 34, 185-188
[15] Sheremeteva O. V., Shevtsov B. M., “Approksimatsiya zakonov raspredeleniya vremen ozhidaniya forshokov na osnove drobnoi modeli deformatsionnoi aktivnosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 40:3 (2022), 137–152 DOI:10.26117/2079-6641-2022-40-3-137-152 | DOI
[16] The Geophysical Service of the Russian Academy of Sciences. Available online: http://www.gsras.ru/new/eng/catalog/
[17] Bak P., Christensen K., Danon L., Scanlon T., “Unified scaling law for earthquakes”, Phys. Rev. Lett., 88:17 (2002), 178501-1–178501-4 | DOI
[18] Carbone V., Sorriso-Valvo L., Harabaglia P., Guerra I., “Unified scaling law for waiting times between seismic events”, Europhys. Lett., 71:6 (2005), 1036-1042 DOI: 10.1209/epl/i2005-10185-0 | DOI
[19] Popova A. V., Sheremeteva O. V., Sagitova R. N., “Analiz parametrov vyborki dannykh Global CMT Catalog dlya postroeniya statisticheskoi modeli seismicheskogo protsessa na primere zony subduktsii Kurilo-Kamchatskoi ostrovnoi dugi”, Vestnik KRAUNTs. Fiz.-mat. nauki, 5:2 (2012), 23-32 DOI: 10.18454/2079-6641-2012-5-2-23-32
[20] Antonenko P. N., Popova A. V., Sheremeteva O. V., “Osobnnosti bluzhdanii v tsepyakh svyazannykh seismicheskikh sobytii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 6:1 (2013), 12-22 DOI: 10.18454/2079-6641-2013-6-1-12-22
[21] Riga G., Balocchi P., “Short-Term Earthquake Forecast with the Seismic Sequence Hierarchization Method”, Open Journal of Earthquake Research, 5 (2016), 79–96 DOI: 10.4236/ojer.2016.52006 | DOI
[22] Dobrovolsky I. R., Zubkov S. I., Myachkin V. I., “Estimation of the size of earthquake preparation zones”, Pageoph., 1979, no. 117, 1025-1044 | DOI
[23] Davis J. C., Statistics and data analysis in geology, John Wiley and Sons. Inc., New York, 1986, 267 pp.