Characteristics of the deformation process in the subduction zone of the Kuril-Kamchatka island arc in the aftershock phase based on a fractional model of deformation activity
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 50-64 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article presents the results of calculations of the values of parameters determining the properties of the deformation process, based on data from the earthquake catalog of the Kamchatka Branch of the Federal Research Center «Geophysical Survey of the Russian Academy of Sciences» (KB FRC GS RAS) for the period from 1 January 1962 to 31 December 2002 for the Kuril-Kamchatka island arc subduction zone (area 46$^\circ$–62$^\circ$ N, 158$^\circ$–174$^\circ$ E) in the aftershock phase in within the framework of the fractional model of the deformation process previously presented by the authors. The compound power-law Poisson process in fractional time representation is considered as a model. Aftershocks associated with the mainshock of a given energy are determined based on energy, spatial and temporal criteria.To construct an empirical cumulative distribution function (eCDF) for aftershocks of a fixed class depending on the time before the mainshock, the superposed epoch analysis is applied to sequences of aftershocks for all mainshocks of a given energy in the catalog. The eCDF of the aftershock waiting time are approximated by the Mittag-Leffler function based on the fractional model of the deformation process developed by the authors. The results of calculations of the values of the Mittag-Leffler function parameters for the mainshocks of the classes K < 12.5 showed that the deformation process in the considered zone has the properties of nonstationarity and hereditarity. With an increase in the class of the mainshock, the process can be considered non-stationary standard Poisson process.
Keywords: aftershocks, approximation, Mittag-Leffler's function, herediterity, non-stationarity, statistical model, fractional model.
Mots-clés : fractional Poisson process
@article{VKAM_2024_49_4_a3,
     author = {O. V. Sheremetyeva and B. M. Shevtsov},
     title = {Characteristics of the deformation process in the subduction zone of the {Kuril-Kamchatka} island arc in the aftershock phase based on a fractional model of deformation activity},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {50--64},
     year = {2024},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a3/}
}
TY  - JOUR
AU  - O. V. Sheremetyeva
AU  - B. M. Shevtsov
TI  - Characteristics of the deformation process in the subduction zone of the Kuril-Kamchatka island arc in the aftershock phase based on a fractional model of deformation activity
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 50
EP  - 64
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a3/
LA  - ru
ID  - VKAM_2024_49_4_a3
ER  - 
%0 Journal Article
%A O. V. Sheremetyeva
%A B. M. Shevtsov
%T Characteristics of the deformation process in the subduction zone of the Kuril-Kamchatka island arc in the aftershock phase based on a fractional model of deformation activity
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 50-64
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a3/
%G ru
%F VKAM_2024_49_4_a3
O. V. Sheremetyeva; B. M. Shevtsov. Characteristics of the deformation process in the subduction zone of the Kuril-Kamchatka island arc in the aftershock phase based on a fractional model of deformation activity. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 50-64. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a3/

[1] Shevtsov B. M., Sagitova R. N., “Statistical analysis of seismic processes on the basis of the diffusion approach”, Doklady Earth Sciences, 426:1 (2009), 642-644 | DOI

[2] Shevtsov B. M., Sagitova R. N., “Diffuzionnyi podkhod v statisticheskom analize seismichnosti Kamchatki”, Vulkanologiya i seismologiya, 6:2 (2012), 56-66

[3] Shevtsov B. M., Sheremetyeva O. V., “Fractional models of seismoacoustic and electromagnetic activity”, E3S Web of Conferences: Solar-Terrestrial Relations and Physics of Earthquake Precursors, 20 (2017), 02013 DOI: 10.1051/e3sconf/20172002013

[4] Sheremeteva O. V., “Model protsessov relaksatsii v razlichnykh rezhimakh plasticheskikh deformatsii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 25:5 (2018), 74–82 DOI:10.18454/2079-6641-2018-25-5-74-82 | MR

[5] Sheremeteva O. V., “Stepennye zakonomernosti v posledovatelnostyakh statisticheski svyazannykh sobytii, predshestvuyuschikh glavnomu sobytiyu”, Vestnik KRAUNTs. Fiz.-mat. nauki, 33:4 (2020), 102-109 DOI: 10.26117/2079- 6641-2020-33-4-102-109 | DOI | Zbl

[6] Shevtsov B. M., “Relaxation oscillations in energy active zones”, E3S Web of Conf., 196:02026 (2020) DOI: 10.1051/e3sconf/202019602026

[7] Sheremetyeva O. V., Shevtsov B. M., “Fractional Model of the Deformation Process”, Fractal Fract., 6 (2022), 372 DOI: 10.3390/fractalfract6070372 | DOI

[8] Janossy L., Renyi A., Aczel J., “On composed Poisson distributions”, I. Acta Math. Acad. Sci. Hungar., 1 (1950), 209–224 | DOI | MR | Zbl

[9] Adelson R. M., “Compound Poisson distributions”, Oper. Res. Quart., 17 (1966), 73–75 | DOI

[10] Di Crescenzo A., Martinucci B., Meoli A., “A fractional counting process and its connection with the Poisson process”, ALEA Lat. Am. J. Probab. Math. Stat., 13:1 (2016), 291–307 DOI: 10.30757/ALEA.v13-12 | DOI | MR | Zbl

[11] Beghin L., Macci C., “Multivariate fractional Poisson processes and compound sums”, Adv. in Appl. Probab., 48:3 (2016) DOI: 10.1017/apr.2016.23 | DOI | MR | Zbl

[12] Khandakar M., Kataria K. K., “Some Compound Fractional Poisson Processes”, Fractal Fract., 7(1):15 (2023) DOI: 10.3390/fractalfract7010015

[13] Kanamori H., “The Energy Release in Great Earthquakes”, J. of Geophysical Research, 82:20 (1977), 2981–2987 | DOI

[14] Gutenberg B., Richter C. F., “Seismicity of the Earth”, Geol. Soc. Am. Bull., 1944, no. 34, 185-188

[15] Sheremeteva O. V., Shevtsov B. M., “Approksimatsiya zakonov raspredeleniya vremen ozhidaniya forshokov na osnove drobnoi modeli deformatsionnoi aktivnosti”, Vestnik KRAUNTs. Fiz.-mat. nauki, 40:3 (2022), 137–152 DOI:10.26117/2079-6641-2022-40-3-137-152 | DOI

[16] The Geophysical Service of the Russian Academy of Sciences. Available online: http://www.gsras.ru/new/eng/catalog/

[17] Bak P., Christensen K., Danon L., Scanlon T., “Unified scaling law for earthquakes”, Phys. Rev. Lett., 88:17 (2002), 178501-1–178501-4 | DOI

[18] Carbone V., Sorriso-Valvo L., Harabaglia P., Guerra I., “Unified scaling law for waiting times between seismic events”, Europhys. Lett., 71:6 (2005), 1036-1042 DOI: 10.1209/epl/i2005-10185-0 | DOI

[19] Popova A. V., Sheremeteva O. V., Sagitova R. N., “Analiz parametrov vyborki dannykh Global CMT Catalog dlya postroeniya statisticheskoi modeli seismicheskogo protsessa na primere zony subduktsii Kurilo-Kamchatskoi ostrovnoi dugi”, Vestnik KRAUNTs. Fiz.-mat. nauki, 5:2 (2012), 23-32 DOI: 10.18454/2079-6641-2012-5-2-23-32

[20] Antonenko P. N., Popova A. V., Sheremeteva O. V., “Osobnnosti bluzhdanii v tsepyakh svyazannykh seismicheskikh sobytii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 6:1 (2013), 12-22 DOI: 10.18454/2079-6641-2013-6-1-12-22

[21] Riga G., Balocchi P., “Short-Term Earthquake Forecast with the Seismic Sequence Hierarchization Method”, Open Journal of Earthquake Research, 5 (2016), 79–96 DOI: 10.4236/ojer.2016.52006 | DOI

[22] Dobrovolsky I. R., Zubkov S. I., Myachkin V. I., “Estimation of the size of earthquake preparation zones”, Pageoph., 1979, no. 117, 1025-1044 | DOI

[23] Davis J. C., Statistics and data analysis in geology, John Wiley and Sons. Inc., New York, 1986, 267 pp.