On a ssystem of coupled linear oscillators with fractional friction and non-constant coefficients for describing geoacoustic emission
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 36-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proposes a generalization of the previously obtained mathematical model of geoacoustic emission, according to which the model takes into account the effects of heredity in dissipative terms. The model is a system of two coupled linear oscillators with non-constant coefficients and with fractional derivatives of Gerasimov-Caputo orders, which describe viscous friction (fractional friction). The mathematical model is studied numerically using a non-local explicit finite-difference scheme of the first order of accuracy, which was implemented in the Maple 2022 computer symbolic mathematics environment. In this computer environment, the modeling results were visualized: oscillograms and phase trajectories were constructed for different values of the model parameters. The interpretation of the modeling results is given. It is shown that fractional friction can affect the process of interaction of geoacoustic emission sources.
Mots-clés : geoacoustic emission
Keywords: Gerasimov-Caputo fractional derivative, model, oscillograms, phase trajectory, Maple 2022.
@article{VKAM_2024_49_4_a2,
     author = {D. F. Sergienko and R. I. Parovik},
     title = {On a ssystem of coupled linear oscillators with fractional friction and non-constant coefficients for describing geoacoustic emission},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {36--49},
     year = {2024},
     volume = {49},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a2/}
}
TY  - JOUR
AU  - D. F. Sergienko
AU  - R. I. Parovik
TI  - On a ssystem of coupled linear oscillators with fractional friction and non-constant coefficients for describing geoacoustic emission
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 36
EP  - 49
VL  - 49
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a2/
LA  - ru
ID  - VKAM_2024_49_4_a2
ER  - 
%0 Journal Article
%A D. F. Sergienko
%A R. I. Parovik
%T On a ssystem of coupled linear oscillators with fractional friction and non-constant coefficients for describing geoacoustic emission
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 36-49
%V 49
%N 4
%U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a2/
%G ru
%F VKAM_2024_49_4_a2
D. F. Sergienko; R. I. Parovik. On a ssystem of coupled linear oscillators with fractional friction and non-constant coefficients for describing geoacoustic emission. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 36-49. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a2/

[1] Tristanov A., Lukovenkova O., Marapulets Yu., Kim A., “Improvement of methods for sparse model identification of pulsed geophysical signals”, IEEE, 256–260 DOI: 10.23919/SPA.2019.8936817

[2] Marapulets Y., Rulenko O., “Joint anomalies of high-frequency geoacoustic emission and atmospheric electric field by the ground–atmosphere boundary in a seismically active region (Kamchatka)”, Atmosphere, 10:5 (2019), 267 | DOI

[3] Marapulets Y. V., Lukovenkova O. O., “Time-frequency analysis of geoacoustic data using adaptive matching pursuit”, Acoustical Physics, 67 (2021), 312–319 | DOI

[4] Lukovenkova O., Marapulets Y., Solodchuk A., “Adaptive Approach to Time-Frequency Analysis of AE Signals of Rocks”, Sensors, 22:24 (2022), 9798 | DOI

[5] Marapulets Y. et al., “Sound range AE as a tool for diagnostics of large technical and natural objects”, Sensors, 23:3 (2023), 1269 | DOI

[6] Fa L. et al., “Progress in acoustic measurements and geoacoustic applications”, AAPPS Bulletin, 34:1 (2024), 23 | DOI

[7] Krylov V. V., Landa P. S., Robsman V. A., “Model razvitiya akusticheskoi emissii kak khaotizatsiya perekhodnykh protsessov v svyazannykh nelineinykh ostsillyatorakh”, Akusticheskii zhurnal, 39:1 (1993), 108-122

[8] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR

[9] Nakhushev A. M, Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.

[10] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006, 523 pp. | MR

[11] Mingazova D. F., Parovik R. I., “Nekotorye aspekty kachestvennogo analiza modeli vysokochastotnoi geoakusticheskoi emissii”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki, 42:1 (2023), 191–206 DOI: 10.26117/2079-6641-2023-42-1-191-206 | DOI | MR

[12] Gapeev M. I., Solodchuk A. A., Parovik R. I., “Svyazannye ostsillyatory kak model vysokochastotnoi geoakusticheskoi emissii”, Vestnik KRAUNTs. Fiziko-matematicheskie nauki., 40:3 (2022), 88–100 DOI: 10.26117/2079-6641-2022-40-3-88-100 | DOI | MR

[13] Gerasimov A. N., “Obobschenie zakonov lineinoi deformatsii i ikh primenenie k zadacham vnutrennego treniya”, Akademiya nauk SSSR. Prikladnaya matematika i mekhanika, 44:6 (1948), 62–78

[14] Caputo M., “Linear models of dissipation whose Q is almost frequency independent”, II. Geophysical Journal International, 13 (1967), 529–539, | DOI

[15] Parovik R. I., “Drobnaya model geoakusticheskoi emissii”, Vestnik KRAUNTs. Fiz.-mat. nauki, 45:4 (2023), 24–35 DOI: 10.26117/2079-6641-2023-45-4-24-35 | DOI | MR

[16] Parovik R. I., “Suschestvovanie i edinstvennost zadachi Koshi dlya uravneniya fraktalnogo nelineinogo ostsillyatora”, Uzbekskii matematicheskii zhurnal, 4 (2017), 110–118 | MR

[17] Parovik R. I., “On a Finite-Difference Scheme for an Hereditary Oscillatory Equation”, Journal of Mathematical Sciences, 253:4 (2021), 547–557 | DOI

[18] Gerhard J., “What's new in Maple 2022: Formal power series”, Maple Transactions, 3:1 (2023), 547–557 DOI: 10.5206/mt.v3i1.15944 | DOI