Mots-clés : phase transitions
@article{VKAM_2024_49_4_a14,
author = {B. M. Shevtsov and O. V. Sheremetyeva},
title = {Anomalous diffusion with memory in criticality theory},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {220--230},
year = {2024},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a14/}
}
B. M. Shevtsov; O. V. Sheremetyeva. Anomalous diffusion with memory in criticality theory. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 220-230. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a14/
[1] Shevtsov B. M., Sheremetyeva O. V., “Fractional Criticality Theory and Its Application in Seismology”, Fractal Fract., 7 (2023), 890 DOI: 10.3390/fractalfract7120890 | DOI
[2] Zaslavskii G. M., Fizika khaosa v gamiltonovykh sistemakh, Institut kompyuternykh issledovanii, Moskva-Izhevsk, 2004, 288 pp.
[3] Le'vy P., Theorie de l'Addition des Variables Aletoires, Guathier-Villiers, Paris, 1937, 328 pp.
[4] Hohenberg P. C., Halperin B. I., “Theory of dynamic critical phenomena”, Rev. Mod. Phys., 49:3 (1977), 435 DOI: 10.1103/RevModPhys.49.435 | DOI
[5] Young W., Pumir A., Pomeau Y., “Anomalous diffusion of tracer in convection rolls”, Phys. Fluids, A1:3 (1989), 462–469 DOI: 10.1063/1.857415 | DOI | Zbl
[6] Shlesinger M. F, Zaslavsky G. M., Klafter J., “Strange kinetics”, Nature, 363 (1993), 31–37 DOI: 10.1038/363031a0 | DOI
[7] Montroll E. W., Shlesinger M. F., “Asymptotic behavior of densities in diffusion dominated two-particle reactions”, Stadies in Statistical Mechanics Vol. 11, ed. Lebowitz J., Montroll M., North-Holland, Amsterdam, 1984, 1
[8] Fogedby H. C., “Lévy Flights in Random Environments”, Phys. Rev. Lett., 73 (1994), 2517 DOI: 10.1103/PhysRevLett.73.2517 | DOI
[9] Shlesinger M. F., Zaslavsky G. M., Frisch U., Le'vy Flight and Related Topics in Physics, Springer, Heidelberg, 1995, 347 pp.
[10] Kahane J. P., “Definition of stable laws, infinitely divisible laws, and Lévy processes”, In Le'vy Flight and Related Topics in Physics, ed. Shlesinger M. F., Zaslavsky G. M., Frisch U., Springer, New York, 1995, 97-109 | DOI
[11] X. Wang and Z. Wen, “Poisson fractional processes”, Chaos, Solitons and Fractals, 18:1 (2003), 169–177 DOI: 10.1016/s0960-0779(02)00579-9 | DOI | Zbl
[12] Wang X., Wen Z., Zhang S., “Fractional Poisson process (II)”, Chaos, Solitons and Fractals, 28:1 (2006), 143–147 DOI: 10.1016/j.chaos.2005.05.019 | DOI | Zbl
[13] Uchaikin V. V., Cahoy D. O., Sibatov R. T., “Fractional processes: from Poisson to branching one”, Int. J. Bifurcation Chaos, 18 (2008), 1–9 | DOI
[14] Beghin, L.; Orsingher, E., “Fractional Poisson processes and related planar random motions”, Electron. Journ. Prob., 14 (2009), 1790–1826 | DOI | Zbl
[15] Scalas E., “A Class of CTRWs: Compound Fractional Poisson Processes”, Fractional Dynamics, Chapter 15, ed. Lim S. C., Klafter J., Metzler R., World Scientific, Singapore, 2012, 353–374 | Zbl
[16] Gorenflo R., Mainardi F., “On the Fractional Poisson Process and the Discretized Stable Subordinator”, Axioms, 4(3) (2015), 321-344 DOI: 10.3390/axioms4030321 | DOI | Zbl
[17] Saichev A. I., Zaslavky G. M., “Fractional kinetic equation: solutions and applications”, Chaos, 7:4 (1997), 753 DOI: 10.1063/1.166272 | DOI
[18] Hilfer H., Anton L., “Fractional master equations and fractal time random walks”, Phys. Rev. E, 51 (1995), R848–R851 DOI: 10.1103/PhysRevE.51.R848 | DOI