Mots-clés : simulation
@article{VKAM_2024_49_4_a12,
author = {A. Yu. Gvozdarev and V. P. Sivokon' and S. Yu. Khomutov},
title = {Estimation of the geomagnetically induced current magnitude in the {Central} power district of the {Kamchatka} power system},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {185--202},
year = {2024},
volume = {49},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a12/}
}
TY - JOUR AU - A. Yu. Gvozdarev AU - V. P. Sivokon' AU - S. Yu. Khomutov TI - Estimation of the geomagnetically induced current magnitude in the Central power district of the Kamchatka power system JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 185 EP - 202 VL - 49 IS - 4 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a12/ LA - ru ID - VKAM_2024_49_4_a12 ER -
%0 Journal Article %A A. Yu. Gvozdarev %A V. P. Sivokon' %A S. Yu. Khomutov %T Estimation of the geomagnetically induced current magnitude in the Central power district of the Kamchatka power system %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2024 %P 185-202 %V 49 %N 4 %U http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a12/ %G ru %F VKAM_2024_49_4_a12
A. Yu. Gvozdarev; V. P. Sivokon'; S. Yu. Khomutov. Estimation of the geomagnetically induced current magnitude in the Central power district of the Kamchatka power system. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 49 (2024) no. 4, pp. 185-202. http://geodesic.mathdoc.fr/item/VKAM_2024_49_4_a12/
[1] Pilipenko V. A., “Vozdeistvie kosmicheskoi pogody na nazemnye tekhnologicheskie sistemy”, Solnechno-zemnaya fizika, 7:3 (2021), 72-110 DOI: 10.12737/szf-73202106
[2] Gaunt C. T., Coetzee G., “Transformer failures in regions incorrectly considered to have low GIC-risk”, IEEE, 2007, 807-812 DOI: 10.1109/PCT.2007.4538419
[3] Gil A., Berendt-Marchel M., Modzelewska R., Siluszyk A., Siluszyk M., Wawrzaszek A., Wawrzynczak A., “Review of geomagnetically induced current proxies in mid-latitude European countries”, Energies, 16 (2023), 7406. DOI: 10.3390/en16217406 | DOI
[4] Mac Manus D. H., Rodger C. J., Dalzell M., Thomson A. W. P., Clilverd M. A., Petersen T., et al., “Long-term geomagnetically induced current observations in New Zealand: Earth return corrections and geomagnetic field driver”, Space Weather, 15:8 (2017), 1020–1038 DOI: 10.1002/ 2017SW001635 | DOI
[5] Barbosa C. S., Hartmann G. A., Pinheiro K. J., “Numerical modeling of geomagnetically induced currents in a Brazilian transmission line”, Advances in Space Research, 55:4 (2015), 1168–1179 DOI: 10.1016/j.asr.2014.11.008 | DOI
[6] Hubert J., Beggan C. D., Richardson G. S., Gomez-Perez N., Collins A., Thomson A. W. P., “Validating a UK geomagnetically induced current model using differential magnetometer measurements”, Space Weather, 22:2, e2023SW003769 (2024) DOI:10.1029/2023SW003769 | DOI
[7] Albert D., Schachinger P., Bailey R.L., Renner H., Achleitner G., “Analysis of long-term GIC measurements in transformers in Austria”, Space Weather, 20:1 (2022), e2021SW002912 DOI: 10.1029/2021SW002912 | DOI
[8] Zhang J. J., Wang C., Sun T. R., et al., “GIC due to storm sudden commencement in low-latitude high-voltage power network in China: Observation and simulation”, Space Weather, 13 (2015), 643–655 DOI:10.1002/2015SW001263 | DOI
[9] Watari S., Nakamura S., Ebinara Y., “Measurement of geomagnetically induced currents (GIC) around Tokyo”, Earth, Planets and Space, 73 (2021), 102 DOI: 10.1186/s40623-021-01422-3 | DOI
[10] Marsal S., Torta J. M., Curto J. J., Canillas-Pérez V., Cid O., Ibañez M., Marcuello A., “Validating GIC modeling in the Spanish power grid by differential magnetometry”, Space Weather, 19:12 (2021) DOI:10.1029/2021SW002905 | DOI
[11] Caraballo R., González-Esparza J. A., Pacheco C. R., Corona-Romero P., “Improved model for GIC calculation in the Mexican power grid”, Space Weather, 21:10, e2022SW003202 (2023) DOI:10.1029/2022SW003202R | DOI
[12] Espinosa K. V., Padilha A. L., Alves L. R., Schultz A., Kelbert A., “Estimating geomagnetically induced currents in southern Brazil using 3-D Earth resistivity model”, Space Weather, 21:4 (2023), e2022SW003166 DOI: 10.1029/2022SW003166 | DOI
[13] Matandirotya E., Cilliers P. J., Van Zyl R. R., “Modeling geomagnetically induced currents in the South African power transmission network using the finite element method”, Space Weather, 13 (2015), 185–195 DOI: 10.1002/2014SW001135 | DOI
[14] Švanda M., Smičková A., Vyboštoková T.,, “Modelling of geomagnetically induced currents in the Czech transmission grid”, Earth Planets and Space, 73:1 (2021), 229 DOI: 10.1186/s40623-021-01555-5 | DOI
[15] Selivanov V. N., Aksenovich T. V., Bilin V. A., Kolobov V. V., Sakharov Ya. A., “Baza dannykh geoindutsirovannykh tokov v magistralnoi elektricheskoi seti «Severnyi tranzit»”, Solnechno-zemnaya fizika, 9:3 (2023), 100-110 DOI: 10.12737/szf-93202311
[16] Sakharov Ya. A., Yagova N. V., Bilin V. A., Selivanov V. N., Aksenovich T. V., Pilipenko V. A., “Parameters influencing the efficiency of generation of geomagnetically induced currents by nonstorm Pc5-6/Pi3 geomagnetic pulsations”, Bulletin of the Russian Academy of Sciences: Physics, 88:3 (2024), 289-295 DOI: 10.1134/S1062873823705421 | DOI
[17] Sivokon V. P., “A New method for detecting geomagnetically induced currents”, Russian Electrical Engineering, 92:11 (2021), 685–690 DOI: 10.3103/S1068371221110146 | DOI
[18] Uchaikin E. O., Gvozdarev A. Y., “Organization of monitoring of even harmonics amplitudes in the electricity networks of the Altai Republic as an indicator of space weather”, 2023 IEEE XVI International scientific and technical conference “Actual problems of electronic instrument engineering” (APEIE), (Novosibirsk, Russian Federation, 2023), 2023, 450-454 DOI: 10.1109/APEIE59731.2023.10347597
[19] Boteler D. H., Pirjola R. J., “Numerical calculation of geoelectric fields that affect critical infrastructure”, International journal of geosciences, 10 (2019), 930–949 DOI:10.4236/ijg.2019.1010053 | DOI
[20] Gvozdarev A. Yu., Kazantzeva O. V., Uchaikin E. O., Yadagaev E. G., “Estimation of geomagnetically induced currents in the Altai republic power system according to the Baygazan magnetic station data”, Bulletin KRASEC. Physical and mathematical sciences, 45:4 (2023), 190-200 DOI: 10.26117/2079-6641-2023-45-4-190-200
[21] Skhema i programma razvitiya energetiki Kamchatskogo kraya na 2023–2027 gody, Ofitsialnyi sait Pravitelstva Kamchatskogo kraya } {\tt https://kamgov.ru/minzkh/shema-i-programma-razvitia-energetiki-kamcatskogo-kraa
[22] Provoda dlya vysokovoltnykh vozdushnykh linii elektroperedachi kompaktirovannye tipa Z marki AAAC-Z, OOO “Lamifil”, Uglich, 2024, 67 pp.
[23] Belyavskii V. V., Aleksanova E. D., “Trekhmernaya geoelektricheskaya model yuzhnoi chasti poluostrova Kamchatka”, Fizika Zemli, 2014, no. 1, 11-32 DOI:10.7868/S0002333714010025 | DOI
[24] Alekseev D., Kuvshinov A., Palshin N., “Compilation of 3D global conductivity model of the Earth for space weather applications”, Earth, Planets and Space, 67 (2015), 108 DOI:10.1186/s40623-015-0272-5 | DOI
[25] Uchaikin E., Gvozdarev A., Kudryavtsev N., “Assessment of the geomagnetically induced currents impact on the power transformers cores of the Altai Republic 110 kV power grid”, E3S Web of Conferences, 542 (2024), 02002 DOI: 10.1051/e3sconf/202454202002 | DOI