Keywords: мathematical modeling, dynamic processes, radon volume activity, Kamchatka, earthquake precursors, fractional derivatives, Gerasimov-Caputo, memory effect, nonlocality, nonlinear equations, inverse problems, unconditional optimization, Gnuplot.
Mots-clés : Levenberg-Marquardt algorithm
@article{VKAM_2024_48_3_a7,
author = {D. A. Tvyordyj and E. O. Makarov and R. I. Parovik},
title = {Identification of parameters of the mathematical $\alpha$-model of radon transport in the accumulation chamber based on data from the {Karymshina} site in {Kamchatka}},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {95--119},
year = {2024},
volume = {48},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a7/}
}
TY - JOUR AU - D. A. Tvyordyj AU - E. O. Makarov AU - R. I. Parovik TI - Identification of parameters of the mathematical $\alpha$-model of radon transport in the accumulation chamber based on data from the Karymshina site in Kamchatka JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 95 EP - 119 VL - 48 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a7/ LA - ru ID - VKAM_2024_48_3_a7 ER -
%0 Journal Article %A D. A. Tvyordyj %A E. O. Makarov %A R. I. Parovik %T Identification of parameters of the mathematical $\alpha$-model of radon transport in the accumulation chamber based on data from the Karymshina site in Kamchatka %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2024 %P 95-119 %V 48 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a7/ %G ru %F VKAM_2024_48_3_a7
D. A. Tvyordyj; E. O. Makarov; R. I. Parovik. Identification of parameters of the mathematical $\alpha$-model of radon transport in the accumulation chamber based on data from the Karymshina site in Kamchatka. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 48 (2024) no. 3, pp. 95-119. http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a7/
[1] Rudakov V. P., Emanatsionnyi monitoring geosred i protsessov, Nauchnyi mir, Moskva, 2009, 175 pp.
[2] Zuzel G., Simgen H., “High sensitivity radon emanation measurements”, Applied radiation and isotopes, 67:5 (2009), 889–893 DOI: 10.1016/j.apradiso.2009.01.052 | DOI
[3] Makarov E. O. Firstov P. P., Voloshin V. N., “Hardware complex for recording soil gas concentrations and searching for precursor anomalies before strong earthquakes in South Kamchatka”, Seismic instruments, 49:1 (2013), 46–52 DOI: 10.3103/S0747923913010064 | DOI
[4] Firstov P. P., Rudakov V. P., “Rezultaty registratsii podpochvennogo radona v 1997–2000 gg. na Petropavlovsk-Kamchatskom geodinamicheskom poligone”, Vulkanologiya i seismologiya, 2003, no. 1, 26–41
[5] Firstov P. P. i dr., “Poisk predvestnikovykh anomalii silnykh zemletryasenii po dannym monitoringa podpochvennykh gazov na Petropavlovsk-Kamchatskom geodinamicheskom poligone”, Geosistemy perekhodnykh zon, 2:1 (2018), 16–32 DOI: 10.30730/2541-8912.2018.2.1.016-032
[6] Barberio M. D. et al., “Diurnal and Semidiurnal Cyclicity of Radon (222Rn) in Groundwater, Giardino Spring, Central Apennines, Italy”, Water, 10:9:1276 (2018) DOI: 10.3390/w10091276 | DOI
[7] Neri M. et al., “Spatial distribution of soil radon as a tool to recognize active faulting on an active volcano: The example of Mt. Etna (Italy)”, Journal of Environmental Radioactivity, 102:9 (2011), 863–870 DOI: 10.1016/j.jenvrad.2011.05.002 | DOI
[8] Petraki E. et al., “Radon-222: A Potential Short-Term Earthquake Precursor”, Earth Science Climatic Change, 6:6 (2015) DOI: 10.4172/2157-7617.1000282 | MR
[9] Hauksson E., “Radon content of groundwater as an earthquake precursor: evaluation of worldwide data and physical basis”, Journal of Geophysical Research: Solid Earth, 86:B10 (1981), 9397–9410 DOI: 10.1029/JB086iB10p09397 | DOI
[10] Inan S. et al., “Geochemicalmonitoring in the Marmara region (NW Turkey): A search for precursors of seismic activity”, Journal of Geophysical Research: Solid Earth, 113:B3 (2008), 1–15 DOI: 10.1029/2007JB005206
[11] Biryulin S. V., Kozlova I. A., Yurkov A. K., “Issledovanie informativnosti ob'emnoi aktivnosti pochvennogo radona pri podgotovke i realizatsii tektonicheskikh zemletryasenii na primere Yuzhno-Kurilskogo regiona”, Vestnik Kamchatskoi regionalnoi assotsiatsii «Uchebno-nauchnyi tsentr». Seriya: Nauki o Zemle, 4:44 (2019), 73–83 DOI: 10.31431/1816-5524-2019-4-44-73-83
[12] Firstov P. P., Makarov E. O., Dinamika podpochvennogo radona na Kamchatke i silnye zemletryaseniya, Kamchatskii gosudarstvennyi universitet im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2018, 148 pp.
[13] Dubinchuk V. T., “Radon as a precursor of earthquakes”, Isotopic and Geochemical Precursors of Earthquakes and Volcanic Eruptions, 1993, 9–22
[14] Vasilyev A. V., Zhukovsky M. V., “Determination of mechanisms and parameters which affect radon entry into a room”, Journal of Environmental Radioactivity, 124 (2013), 185–190 DOI: 10.1016/j.jenvrad.2013.04.014 | DOI
[15] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Elsevier Science Limited, Amsterdam, 2006, 540 pp. | MR | Zbl
[16] Podlubny I., Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Academic Press, New York, 1999, 340 pp. | MR | Zbl
[17] Nakhushev A. M., Drobnoe ischislenie i ego primenenie, Fizmatlit, Moskva, 2003, 272 pp.
[18] King C. Y., “Gas-geochemical approaches to earthquake prediction”, Isotopic and Geochemical Precursors of Earthquakes and Volcanic Eruptions, 1993, 22–36
[19] Tverdyi D. A., Makarov E. O., Parovik R. I., “Hereditary Mathematical Model of the Dynamics of Radon Accumulation in the Accumulation Chamber”, Mathematics, 11:4 (2023), 850 DOI: 10.3390/math11040850 | DOI | MR
[20] Parovik R. I., Shevtsov B. M., “Radon transfer processes in fractional structure medium”, Mathematical Models and Computer Simulations, 2 (2010), 180–185 DOI: 10.1134/S2070048210020055 | DOI
[21] Tverdyi D. A., Parovik R. I., Makarov E. O., Firstov P. P., “Research of the process of radon accumulation in the accumulating chamber taking into account the nonlinearity of its entrance”, E3S Web Conference, 196:02027 (2020), 1–6 DOI: 10.1051/e3sconf/202019602027
[22] Tverdyi D. A., Makarov E. O., Parovik R. I., “Research of Stress-Strain State of Geo-Environment by Emanation Methods on the Example of alpha(t)-Model of Radon Transport”, Bulletin KRASEC. Physical and Mathematical Sciences, 44:3 (2023), 86–104 DOI: 10.26117/2079-6641-2023-44-3-86-104 | MR | Zbl
[23] Gerasimov A. N., “Generalization of linear deformation laws and their application to internal friction problems”, Applied Mathematics and Mechanics, 12 (1948), 529–539 | MR
[24] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13:5 (1967), 529–539 DOI: 10.1111/j.1365-246X.1967.tb02303.x | DOI
[25] Mueller J. L., Siltanen S., Linear and Nonlinear Inverse Problems with Practical Applications, Society for Industrial and Applied Mathematics, Philadelphia, 2012, 372 pp. | MR | Zbl
[26] Tarantola A., Inverse problem theory : methods for data fitting and model parameter estimation, Elsevier Science Pub. Co., Amsterdam and New York, 1987, 613 pp. | MR
[27] Arregui I., “Inversion of Physical Parameters in Solar Atmospheric Seismology”, Multi-scale Dynamical Processes in Space and Astrophysical Plasmas, 2012, 159–169 DOI: 10.1007/978-3-642-30442-2_18 | DOI
[28] Tahmasebi P., Javadpour F., Sahimi M., “Stochastic shale permeability matching: Three-dimensional characterization and modeling”, International Journal of Coal Geology, 165 (2016), 231–242 DOI: 10.1016/j.coal.2016.08.024 | DOI
[29] Lailly P., “The seismic inverse problem as a sequence of before stack migrations”, Conference on Inverse Scattering, Theory and application, 1983, 206–220 | MR
[30] Utkin V. I., Yurkov A. K., “Radon as a tracer of tectonic movements”, Russian Geology and geophysics, 51:2 (2010), 220–227 DOI: 10.1016/j.rgg.2009.12.022 | DOI
[31] Parovik R. I., Matematicheskie modeli neklassicheskoi teorii emanatsionnogo metoda, Kamchatskii gosudarstvennyi universitet im. Vitusa Beringa, Petropavlovsk-Kamchatskii, 2014, 80 pp.
[32] Ponamarev A. S., “Fraktsionirovanie v gidroterme kak potentsialnaya vozmozhnost formirovaniya predvestnikov zemletryasenii”, Geokhimiya, 1989, no. 5, 714–724
[33] Barsukov V. L., Varshal G. M., Garanin A. V., Zamokina N. S., “Znachenie gidrogeokhimicheskikh metodov dlya kratkosrochnogo prognoza zemletryasenii”, Gidrogeokhimicheskie predvestniki zemletryasenii, Nauka, Moskva, 1985, 3–16
[34] Etiope G., Martinelli G., “Migration of carrier and trace gases in the geosphere: an overview”, Physics of the Earth and Planetary Interiors, 129:3–4 (2002), 185–204 DOI: 10.1016/S0031-9201(01)00292-8 | DOI
[35] Varhegyi A., Baranyi I., Somogyi G. A., “Model for the vertical subsurface radon transport in «geogas» microbubbles”, Geophysical Transactions, 32:3 (1986), 235–253
[36] Gorbushina L. V., Ryaboshtan Yu. S., “Emanatsionnyi metod indikatsii geodinamicheskikh protsessov pri inzhenerno-geologicheskikh izyskaniyakh”, Sovetskaya geologiya, 1975, no. 4, 106–112
[37] Kozlova I. A., Yurkov A. K., “Otrazhenie posledovatelnykh seismicheskikh sobytii v pole ob'emnoi aktivnosti radona”, Uralskii geofizicheskii vestnik, 2016, no. 1(27), 35–39 | MR
[38] Gudzenko V. V., Dubinchuk V. T., Izotopy radiya i radon v prirodnykh vodakh, Nauka, Moskva, 1987, 156 pp.
[39] Novikov G. F., Radiometricheskaya razvedka, Nedra, Leningrad, 1989, 406 pp.
[40] Uchaikin V. V., Fractional Derivatives for Physicists and Engineers. Vol. I. Background and Theory, Springer, Berlin/Heidelberg, 2013, 373 pp. | MR
[41] Volterra V., “Sur les équations intégro-différentielles et leurs applications”, Acta Mathematica, 35:1 (1912), 295–356 DOI: 10.1007/BF02418820 | DOI | MR
[42] Patnaik S., Hollkamp J. P., Semperlotti F., “Applications of variable-order fractional operators: a review”, Proceedings of the Royal Society A, 476:2234 (2020), 20190498 DOI: 10.1098/rspa.2019.0498 | DOI | MR
[43] Coimbra C. F. M., “Mechanics with variable-order differential operators”, Annalen der Physik, 515:11–12 (2003), 692–703 DOI: 10.1002/andp.200351511-1203 | DOI
[44] Mandelbrot B. B., The fractal geometry of nature, W.H. Freeman and Co., New York, 1982, 468 pp. | MR | Zbl
[45] Tverdyi D. A., Parovik R. I., “Investigation of Finite-Difference Schemes for the Numerical Solution of a Fractional Nonlinear Equation”, Fractal and Fractional, 6:1 (2022), 23 DOI: 10.3390/fractalfract6010023 | DOI
[46] Tverdyi D. A., Parovik R. I., “Application of the Fractional Riccati Equation for Mathematical Modeling of Dynamic Processes with Saturation and Memory Effect”, Fractal and Fractional, 6:3 (2022), 163 DOI: 10.3390/fractalfract6030163 | DOI
[47] Chicco D., Warrens M. J., Jurman G., “The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation”, PeerJ Computer Science, 299 (2021), e623 DOI: 10.7717/peerj-cs.623 | DOI
[48] Cox D. R. Hinkley D. V., Theoretical Statistics, 1st edition, Chapman and Hall/CRC, New York, 1974, 528 pp. | MR
[49] Dennis J. E., Robert Jr., Schnabel B., Numerical methods for unconstrained optimization and nonlinear equations, SIAM, Philadelphia, 1996, 394 pp. | MR | Zbl
[50] Gill P. E., Murray W., Wright M. H., Practical Optimization, SIAM, Philadelphia, 2019, 421 pp. | MR
[51] Levenberg K., “A method for the solution of certain non-linear problems in least squares”, Quarterly of applied mathematics, 2:2 (1944), 164–168 DOI: 10.1090/qam/10666 | DOI | MR | Zbl
[52] Marquardt D. W., “An algorithm for least-squares estimation of nonlinear parameters”, Journal of the society for Industrial and Applied Mathematics, 11:2 (1963), 431–441 DOI: 10.1137/0111030 | DOI | MR | Zbl
[53] Ford W., Numerical linear algebra with applications: Using MATLAB, 1st edition, Academic Press, Massachusetts, 2014, 628 pp. | MR
[54] Janert P. K., Gnuplot in Action: Understanding Data with Graphs, 2nd Edition, Manning, New-York, 2016, 400 pp.