Mots-clés : oscillogram
@article{VKAM_2024_48_3_a6,
author = {G. S. Israyiljanova and Sh. T. Karimov and R. I. Parovik},
title = {Mathematical fractional {Zeeman} model for describing cardiac contractions},
journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
pages = {83--94},
year = {2024},
volume = {48},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a6/}
}
TY - JOUR AU - G. S. Israyiljanova AU - Sh. T. Karimov AU - R. I. Parovik TI - Mathematical fractional Zeeman model for describing cardiac contractions JO - Vestnik KRAUNC. Fiziko-matematičeskie nauki PY - 2024 SP - 83 EP - 94 VL - 48 IS - 3 UR - http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a6/ LA - ru ID - VKAM_2024_48_3_a6 ER -
%0 Journal Article %A G. S. Israyiljanova %A Sh. T. Karimov %A R. I. Parovik %T Mathematical fractional Zeeman model for describing cardiac contractions %J Vestnik KRAUNC. Fiziko-matematičeskie nauki %D 2024 %P 83-94 %V 48 %N 3 %U http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a6/ %G ru %F VKAM_2024_48_3_a6
G. S. Israyiljanova; Sh. T. Karimov; R. I. Parovik. Mathematical fractional Zeeman model for describing cardiac contractions. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 48 (2024) no. 3, pp. 83-94. http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a6/
[1] World Health Organization, Cardiovascular diseases (CVDs). Retrieved from WHO website, 2021
[2] Zipes D. P., Jalife J., Cardiac Electrophysiology: From Cell to Bedside, Elsevier, 2018
[3] Nishimura R. A., et al., “Mechanisms of Heart Failure”, Circulation Research, 126(10) (2020), 1404-1420
[4] Klein A. L., et al., “Noninvasive Imaging of the Heart: Advances and Applications”, Journal of the American College of Cardiology, 73(1) (2019), 1-15
[5] Zeeman E. C., “Differential equations for the heartbeat and nerve impulse”, Salvador symposium on Dynamical Systems, Academic Press, 1973, 683-741 pp. | MR
[6] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR
[7] Nakhushev A. M., Fractional calculus and its application, Fizmatlit, Moscow, 2003, 272 pp. (in Russian)
[8] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 523 pp. | MR | Zbl
[9] Gerasimov A. N., “Generalization of the laws of linear deformation and their application to problems of internal friction”, Academy of Sciences of the SSR. Applied Mathematics and Mechanics, 44:6 (1948), 62-78 (in Russian) | MR
[10] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13 (1967), 529-539 | DOI
[11] Parovik R. I., “Existence and uniqueness of the Cauchy problem for a fractal nonlinear oscillator equation”, Uzbek Mathematical Journal, 2017, no. 4, 110-118 (in Russian) | MR
[12] Parovik R. I., “On a Finite-Difference Scheme for an Hereditary Oscillatory Equation”, Journal of Mathematical Sciences, 253:4 (2021), 547-557 | DOI | Zbl
[13] Van Horn B.M. II, Nguyen Q., Hands-On Application Development with PyCharm: Build Applications like a Pro with the Ultimate Python Development Tool, Packt Publishing Ltd., Birmingham, UK, 2023
[14] Bendixson I., “Sur les courbes définies par des équations différentielles”, Acta Math., 24(1) (1901), 1–88 | DOI | MR
[15] Parovik R. I., Yakovleva T. P., “Construction of maps for dynamic modes and bifurcation diagrams in nonlinear dynamics using the Maple computer mathematics software package”, Journal of Physics: Conference Series, 2373 (2022), 52022 | DOI