Mathematical fractional Zeeman model for describing cardiac contractions
Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 48 (2024) no. 3, pp. 83-94 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

he article proposes a fundamentally new generalization of the previously known mathematical Zeeman model of heart contractions due to electrochemical action. This generalization is due to the presence of heredity effects in the oscillatory system, which indicate that it can store information about its previous states. From the mathematical point of view, the property of heredity can be described using integrodifferential equations of the Volterra type with power difference kernels or using fractional derivatives. In the article, fractional differentiation operators in the sense of Gerasimov-Caputo were introduced into the Zeeman model equations, as well as the characteristic time for matching dimensions in the model equations. The resulting mathematical fractional Zeeman model was studied due to its nonlinearity using numerical methods – a nonlocal finite-difference scheme. The numerical algorithm was implemented in Python in the PyCharm 2024.1 environment, which implemented the ability to visualize calculations using oscillograms and phase trajectories. The interpretation of the modeling results was carried out.
Keywords: eart contractions, fractional mathematical Zeeman model, fractional derivative of Gerasimov Caputo, numerical algorithm, phase trajectory.
Mots-clés : oscillogram
@article{VKAM_2024_48_3_a6,
     author = {G. S. Israyiljanova and Sh. T. Karimov and R. I. Parovik},
     title = {Mathematical fractional {Zeeman} model for describing cardiac contractions},
     journal = {Vestnik KRAUNC. Fiziko-matemati\v{c}eskie nauki},
     pages = {83--94},
     year = {2024},
     volume = {48},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a6/}
}
TY  - JOUR
AU  - G. S. Israyiljanova
AU  - Sh. T. Karimov
AU  - R. I. Parovik
TI  - Mathematical fractional Zeeman model for describing cardiac contractions
JO  - Vestnik KRAUNC. Fiziko-matematičeskie nauki
PY  - 2024
SP  - 83
EP  - 94
VL  - 48
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a6/
LA  - ru
ID  - VKAM_2024_48_3_a6
ER  - 
%0 Journal Article
%A G. S. Israyiljanova
%A Sh. T. Karimov
%A R. I. Parovik
%T Mathematical fractional Zeeman model for describing cardiac contractions
%J Vestnik KRAUNC. Fiziko-matematičeskie nauki
%D 2024
%P 83-94
%V 48
%N 3
%U http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a6/
%G ru
%F VKAM_2024_48_3_a6
G. S. Israyiljanova; Sh. T. Karimov; R. I. Parovik. Mathematical fractional Zeeman model for describing cardiac contractions. Vestnik KRAUNC. Fiziko-matematičeskie nauki, Tome 48 (2024) no. 3, pp. 83-94. http://geodesic.mathdoc.fr/item/VKAM_2024_48_3_a6/

[1] World Health Organization, Cardiovascular diseases (CVDs). Retrieved from WHO website, 2021

[2] Zipes D. P., Jalife J., Cardiac Electrophysiology: From Cell to Bedside, Elsevier, 2018

[3] Nishimura R. A., et al., “Mechanisms of Heart Failure”, Circulation Research, 126(10) (2020), 1404-1420

[4] Klein A. L., et al., “Noninvasive Imaging of the Heart: Advances and Applications”, Journal of the American College of Cardiology, 73(1) (2019), 1-15

[5] Zeeman E. C., “Differential equations for the heartbeat and nerve impulse”, Salvador symposium on Dynamical Systems, Academic Press, 1973, 683-741 pp. | MR

[6] Volterra V., Functional theory, integral and integro-differential equations, Dover Publications, New York, 2005, 288 pp. | MR

[7] Nakhushev A. M., Fractional calculus and its application, Fizmatlit, Moscow, 2003, 272 pp. (in Russian)

[8] Kilbas A. A., Srivastava H. M., Trujillo J. J., Theory and Applications of Fractional Differential Equations, Amsterdam, Elsevier, 523 pp. | MR | Zbl

[9] Gerasimov A. N., “Generalization of the laws of linear deformation and their application to problems of internal friction”, Academy of Sciences of the SSR. Applied Mathematics and Mechanics, 44:6 (1948), 62-78 (in Russian) | MR

[10] Caputo M., “Linear models of dissipation whose Q is almost frequency independent – II”, Geophysical Journal International, 13 (1967), 529-539 | DOI

[11] Parovik R. I., “Existence and uniqueness of the Cauchy problem for a fractal nonlinear oscillator equation”, Uzbek Mathematical Journal, 2017, no. 4, 110-118 (in Russian) | MR

[12] Parovik R. I., “On a Finite-Difference Scheme for an Hereditary Oscillatory Equation”, Journal of Mathematical Sciences, 253:4 (2021), 547-557 | DOI | Zbl

[13] Van Horn B.M. II, Nguyen Q., Hands-On Application Development with PyCharm: Build Applications like a Pro with the Ultimate Python Development Tool, Packt Publishing Ltd., Birmingham, UK, 2023

[14] Bendixson I., “Sur les courbes définies par des équations différentielles”, Acta Math., 24(1) (1901), 1–88 | DOI | MR

[15] Parovik R. I., Yakovleva T. P., “Construction of maps for dynamic modes and bifurcation diagrams in nonlinear dynamics using the Maple computer mathematics software package”, Journal of Physics: Conference Series, 2373 (2022), 52022 | DOI